4 resultados para Motion Estimation

em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We analyse the influence of colour information in optical flow methods. Typically, most of these techniques compute their solutions using grayscale intensities due to its simplicity and faster processing, ignoring the colour features. However, the current processing systems have minimized their computational cost and, on the other hand, it is reasonable to assume that a colour image offers more details from the scene which should facilitate finding better flow fields. The aim of this work is to determine if a multi-channel approach supposes a quite enough improvement to justify its use. In order to address this evaluation, we use a multi-channel implementation of a well-known TV-L1 method. Furthermore, we review the state-of-the-art in colour optical flow methods. In the experiments, we study various solutions using grayscale and RGB images from recent evaluation datasets to verify the colour benefits in motion estimation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] In this work we propose a new variational model for the consistent estimation of motion fields. The aim of this work is to develop appropriate spatio-temporal coherence models. In this sense, we propose two main contributions: a nonlinear flow constancy assumption, similar in spirit to the nonlinear brightness constancy assumption, which conveniently relates flow fields at different time instants; and a nonlinear temporal regularization scheme, which complements the spatial regularization and can cope with piecewise continuous motion fields. These contributions pose a congruent variational model since all the energy terms, except the spatial regularization, are based on nonlinear warpings of the flow field. This model is more general than its spatial counterpart, provides more accurate solutions and preserves the continuity of optical flows in time. In the experimental results, we show that the method attains better results and, in particular, it considerably improves the accuracy in the presence of large displacements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] The aim of this work is to propose a new method for estimating the backward flow directly from the optical flow. We assume that the optical flow has already been computed and we need to estimate the inverse mapping. This mapping is not bijective due to the presence of occlusions and disocclusions, therefore it is not possible to estimate the inverse function in the whole domain. Values in these regions has to be guessed from the available information. We propose an accurate algorithm to calculate the backward flow uniquely from the optical flow, using a simple relation. Occlusions are filled by selecting the maximum motion and disocclusions are filled with two different strategies: a min-fill strategy, which fills each disoccluded region with the minimum value around the region; and a restricted min-fill approach that selects the minimum value in a close neighborhood. In the experimental results, we show the accuracy of the method and compare the results using these two strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] We present in this paper a variational approach to accurately estimate simultaneously the velocity field and its derivatives directly from PIV image sequences. Our method differs from other techniques that have been presented in the literature in the fact that the energy minimization used to estimate the particles motion depends on a second order Taylor development of the flow. In this way, we are not only able to compute the motion vector field, but we also obtain an accurate estimation of their derivatives. Hence, we avoid the use of numerical schemes to compute the derivatives from the estimated flow that usually yield to numerical amplification of the inherent uncertainty on the estimated flow. The performance of our approach is illustrated with the estimation of the motion vector field and the vorticity on both synthetic and real PIV datasets.