9 resultados para Migrants indiens
em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España
A simple model to estimate active flux in relation to zooplankton lunar cycles in subtropical waters
Resumo:
Máster en Oceanografía. Programa de Doctorado en Oceanografía
Resumo:
[EN] Diel Vertical Migrants (DVMs) are mainly zooplankton and micronekton which migrate upward from 400-500 m depth every night to feed on the productive epipelagic zone, coming back at dawn to the mesopelagic zone, where they defecate, excrete, and respire the ingested carbon. DVMs should contribute to the biological pump in the ocean and, accordingly, to the global CO2 balance. Although those migrants are mainly small fishes, cephalopods and crustaceans, the lanternfishes (myctophidae) usually contribute up to 80% of total DVMs biomass. Thus, myctophids may represent a pathway accounting for a substantial export of organic carbon to the deep ocean. However, the magnitude of this transport is still poorly known. In order to assess this active flux of carbon, we performed a preliminary study of mesopelagic organisms around the Canary Islands. Here we present the results of diet, daily rations and feeding chronology of Lobianchia dofleini, Hygophum hygomii and Ceratoscopelus maderensis, 3 dominant species of myctophids performing diel vertical migrations in the Subtropical Eastern North Atlantic Ocean. Samples were obtained on board the RV La Bocaina during June 2009. Myctophids were sorted and fixed in 4% buffered formalin and the stomach contents of target species were examined and weighted. Feeding chronology was approached by studying stomach fullness and state of digestion of prey items in individuals from hauls performed at different times and depths. Our results provide further information about lanternfishes feeding ecology in relation to their vertical migration patterns as well as their contribution to the biological carbon pump.
Resumo:
[EN]Diel vertical migrants (DVMs) are mainly zooplankton and micronekton that migrate upward from 400-700 m depth every night to feed in the productive epipelagic zone and come back at dawn to the mesopelagic zone, where they release the ingested carbon. DVMs should contribute to the biological pump in the ocean and, accordingly, to thevglobal CO2 balance. A large portion of the DVMs biomass are the lanternfishes (myctophidae), which might represent a pathway accounting for a substantial export of organic carbon to the deep ocean. Nevertheless, the magnitude of this transport is still poorly known. The combined study of migration and feeding ecology is a good approach to improve our knowledge of the DVMs role in this active carbon flux. Two dominant myctophids in the Subtropical Eastern North Atlantic Ocean (Hygophum hygomii (Lütken, 1892) and (Lobianchia dofleini (Zugmayer, 1911)) were studied from several surveys carried out around the Canary Islands during the last decade. Our results showed a marked diel vertical migration and a prevailing nocturnal feeding with predation mainly on copepods and euphausiids. The digestion state of prey suggested a slow stomach evacuation rate and that most of the ingested carbon in the epipelagic is efficiently transported to the mesopelagic zone.
Resumo:
[EN] Migrant biota transports carbon to the mesopelagic zone due to their feeding at the shallower layers and their defecation, respiration, excretion and mortality at depth. The so-called active flux has been considered a small number compared to gravitational sinking. Recent assessments in subtropical waters show an important effect due to predation by interzonal diel vertical migrants (DVMs). The consumption and subsequent transport of epipelagic zooplankton by DVMs (mainly micronekton) to the mesopelagic zone seemed similar to the mean gravitational export. However, the consequences of this active transport to the bathypelagic zone are almost unknown. Here, we show the effect of the Atlantic and Pacific equatorial upwelling systems on the vertical distribution of acoustic backscatter from the surface to bathypelagic depths. The enhancement of the acoustic signal below the upwelling zone was observed to reach 4000 m depth, coinciding with high abundances and activity of bacteria at those depths. The results suggest an active carbon transport from the epipelagic driven by zooplankton and micronekton, enhancing the efficiency of the biological pump and giving an insight about the fate of an increased productivity at the shallower layers of the ocean
Resumo:
Celebrado en la Sala de Grado de la Facultad de Ciencias del Mar (ULPGC) el 18 de junio de 2013
Resumo:
Programa de doctorado en Oceanografía
Resumo:
[EN] Habitats dominated by algal canopies are often altered by physical disturbances of varying severity, changing environmental conditions and biological processes. We used Artificial Seaweed Units (ASUs) to test whether severity of physical disturbances on algal canopies affects the post-disturbance colonization of gastropods on subtidal reefs. Specifically, we examined patterns of assemblage structure of gastropods to test the hypothesis that the extent and intensity of canopy removal affects the post-disturbance colonization of ASUs, testing the consistency of these effects among four regions encompassing a 68 latitudinal gradient in southwestern Australia. Because adjacent habitats can act as a source of new colonists (either as drifting migrants or as a source of propagules) from the perimeter surrounding perturbed areas, we also predicted that patterns of colonization (types and total abundances of colonizers) were influenced by the available pool of individuals at the scale of reefs. Three reefs were selected within each region. On each reef, ASUs were placed in the centre of circular canopy clearings of different size (0, 3, 13 and 50 m2) and intensity (50% vs 100%), and retrieved after 3 months. Resulting assemblages occupying the ASUs were quantitatively representative of the adjacent (undisturbed), algal-associated, assemblages at the scale of reef. Within reefs, recruited assemblages largely mimicked those associated with erect red algae. However, neither disturbance size nor intensity affected the colonization patterns across reefs and regions. These results suggest that algal-associated gastropods, regardless of the prevalent mode of dispersion, are resilient to physical disturbances to canopies across broad geographical regions as long as the pool of potential colonists is maintained. A high dispersal ability of gastropods likely ensures a quick colonization of recovering algal habitats.
Resumo:
[ES] El presente trabajo es una aproximación centrada en la evolución del comercio canario-africano entre 2001 y 2011, así como en los principales valores obtenidos por las exportaciones e importaciones, incidiendo especialmente en la localización geográfica de los países proveedores y los mercados de destino de las producciones más relevantes. Todo ello se ha hecho sin perder de vista la perspectiva peculiar del Archipiélago con una economía escasamente industrializada en el contexto español, y prescindiendo de los flujos de inversión, las remesas de los migrantes o los intercambios de servicios. Las principales fuentes de información consultadas han sido las publicadas por el INE, ISTAC y la OMC en donde se recogen estadísticas oficiales basadas en los datos suministrados por la Agencia Tributaria del Ministerio de Economía y Hacienda.
Resumo:
[ES] El propósito de este trabajo es hacer un recorrido histórico, rastreando la presencia africana y afrodescendiente en el actual territorio argentino, desde el período colonial hasta la actualidad. Centraremos nuestro análisis en los momentos más significativos de su llegada, observando ciertos parámetros que las caracterizan y, al mismo tiempo, identificaremos patrones de marginación o exclusión social de los migrantes africanos y sus descendientes.