16 resultados para Mesh smoothing

em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España


Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN]In this work we develop a procedure to deform a given surface triangulation to obtain its alignment with interior curves. These curves are defined by splines in a parametric space and, subsequently, mapped to the surface triangulation. We have restricted our study to orthogonal mapping, so we require the curves to be included in a patch of the surface that can be orthogonally projected onto a plane (our parametric space). For example, the curves can represent interfaces between different materials or boundary conditions, internal boundaries or feature lines. Another setting in which this procedure can be used is the adaption of a reference mesh to changing curves in the course of an evolutionary process...

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN]The meccano method is a novel and promising mesh generation method for simultaneously creating adaptive tetrahedral meshes and volume parametrizations of a complex solid. We highlight the fact that the method requires minimum user intervention and has a low computational cost. The method builds a 3-D triangulation of the solid as a deformation of an appropriate tetrahedral mesh of the meccano. The new mesh generator combines an automatic parametrization of surface triangulations, a local refinement algorithm for 3-D nested triangulations and a simultaneous untangling and smoothing procedure. At present, the procedure is fully automatic for a genus-zero solid. In this case, the meccano can be a single cube. The efficiency of the proposed technique is shown with several applications...

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN]The meccano method is a novel and promising mesh generation technique for simultaneously creating adaptive tetrahedral meshes and volume parameterizations of a complex solid. The method combines several former procedures: a mapping from the meccano boundary to the solid surface, a 3-D local refinement algorithm and a simultaneous mesh untangling and smoothing. In this paper we present the main advantages of our method against other standard mesh generation techniques. We show that our method constructs meshes that can be locally refined by using the Kossaczky bisection rule and maintaining a high mesh quality. Finally, we generate volume T-mesh for isogeometric analysis, based on the volume parameterization obtained by the method…

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN]In this paper, we extend a simultaneous untangling and smoothing technique previously developed for triangular and tetrahedral meshes to quadrilateral and hexahedral ones. Specifically, we present a technique that iteratively untangles and smooths a given quadrilateral or hexahedral mesh by minimizing an objective function defined in terms of a modification of an algebraic quality measure. The proposed method optimizes the mesh quality by a local node relocation process. That is, without modifying the mesh connectivity. Finally, we present several examples to show that the proposed technique obtains valid meshes composed by high-quality quadrilaterals and hexahedra, even when we start from tangled meshes…

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN]We present advances of the meccano method [1,2] for tetrahedral mesh generation and volumetric parameterization of solids. The method combines several former procedures: a mapping from the meccano boundary to the solid surface, a 3-D local refinement algorithm and a simultaneous mesh untangling and smoothing. The key of the method lies in defining a one-to-one volumetric transformation between the parametric and physical domains. Results with adaptive finite elements will be shown for several engineering problems. In addition, the application of the method to T-spline modelling and isogeometric analysis [3,4] of complex geometries will be introduced…

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] In this paper we study a variational problem derived from a computer vision application: video camera calibration with smoothing constraint. By video camera calibration we meanto estimate the location, orientation and lens zoom-setting of the camera for each video frame taking into account image visible features. To simplify the problem we assume that the camera is mounted on a tripod, in such case, for each frame captured at time t , the calibration is provided by 3 parameters : (1) P(t) (PAN) which represents the tripod vertical axis rotation, (2) T(t) (TILT) which represents the tripod horizontal axis rotation and (3) Z(t) (CAMERA ZOOM) the camera lens zoom setting. The calibration function t -> u(t) = (P(t),T(t),Z(t)) is obtained as the minima of an energy function I[u] . In thIs paper we study the existence of minima of such energy function as well as the solutions of the associated Euler-Lagrange equations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN]We present a new method to construct a trivariate T-spline representation of complex solids for the application of isogeometric analysis. We take a genus-zero solid as a basis of our study, but at the end of the work we explain the way to generalize the results to any genus solids. The proposed technique only demands a surface triangulation of the solid as input data. The key of this method lies in obtaining a volumetric parameterization between the solid and the parametric domain, the unitary cube. To do that, an adaptive tetrahedral mesh of the parametric domain is isomorphically transformed onto the solid by applying a mesh untangling and smoothing procedure...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN]We present a new method to construct a trivariate T-spline representation of complex genuszero solids for the application of isogeometric analysis. The proposed technique only demands a surface triangulation of the solid as input data. The key of this method lies in obtaining a volumetric parameterization between the solid and the parametric domain, the unitary cube. To do that, an adaptive tetrahedral mesh of the parametric domain is isomorphically transformed onto the solid by applying a mesh untangling and smoothing procedure. The control points of the trivariate T-spline are calculated by imposing the interpolation conditions on points sited both on the inner and on the surface of the solid...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN]A new parallel algorithm for simultaneous untangling and smoothing of tetrahedral meshes is proposed in this paper. We provide a detailed analysis of its performance on shared-memory many-core computer architectures. This performance analysis includes the evaluation of execution time, parallel scalability, load balancing, and parallelism bottlenecks. Additionally, we compare the impact of three previously published graph coloring procedures on the performance of our parallel algorithm. We use six benchmark meshes with a wide range of sizes. Using these experimental data sets, we describe the behavior of the parallel algorithm for different data sizes. We demonstrate that this algorithm is highly scalable when it runs on two different high-performance many-core computers with up to 128 processors...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN]The application of the Isogeometric Analysis (IA) with T-splines [1] demands a partition of the parametric space, C, in a tiling containing T-junctions denominated T-mesh. The T-splines are used both for the geometric modelization of the physical domain, D, and the basis of the numerical approximation. They have the advantage over the NURBS of allowing local refinement. In this work we propose a procedure to construct T-spline representations of complex domains in order to be applied to the resolution of elliptic PDE with IA. In precedent works [2, 3] we accomplished this task by using a tetrahedral parametrization…

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Congresos y conferencias

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN]We present a new strategy, based on the meccano method [1, 2, 3], to construct a T-spline parameterization of 2D geometries for the application of isogeometric analysis. The proposed method only demands a boundary representation of the geometry as input data. The algorithm obtains, as a result, high quality parametric transformation between 2D objects and the parametric domain, the unit square. The key of the method lies in defining an isomorphic transformation between the parametric and physical T-mesh finding the optimal position of the interior nodes by applying a new T-mesh untangling and smoothing procedure. Bivariate T-spline representation is calculated by imposing the interpolation conditions on points sited both on the interior and on the boundary of the geometry…

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN]We present a new method, based on the idea of the meccano method and a novel T-mesh optimization procedure, to construct a T-spline parameterization of 2D geometries for the application of isogeometric analysis. The proposed method only demands a boundary representation of the geometry as input data. The algorithm obtains, as a result, high quality parametric transformation between 2D objects and the parametric domain, the unit square. First, we define a parametric mapping between the input boundary of the object and the boundary of the parametric domain. Then, we build a T-mesh adapted to the geometric singularities of the domain in order to preserve the features of the object boundary with a desired tolerance…

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN]This work introduces a new technique for tetrahedral mesh optimization. The procedure relocates boundary and inner nodes without changing the mesh topology. In order to maintain the boundary approximation while boundary nodes are moved, a local refinement of tetrahedra with faces on the solid boundary is necessary in some cases. New nodes are projected on the boundary by using a surface parameterization. In this work, the proposed method is applied to tetrahedral meshes of genus-zero solids that are generated by the meccano method. In this case, the solid boundary is automatically decomposed into six surface patches which are parameterized into the six faces of a cube with the Floater parameterization...