7 resultados para Legs.
em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España
Resumo:
[EN] To determine whether conditions for O2 utilization and O2 off-loading from the hemoglobin are different in exercising arms and legs, six cross-country skiers participated in this study. Femoral and subclavian vein blood flow and gases were determined during skiing on a treadmill at approximately 76% maximal O2 uptake (V(O2)max) and at V(O2)max with different techniques: diagonal stride (combined arm and leg exercise), double poling (predominantly arm exercise), and leg skiing (predominantly leg exercise). The percentage of O2 extraction was always higher for the legs than for the arms. At maximal exercise (diagonal stride), the corresponding mean values were 93 and 85% (n = 3; P < 0.05). During exercise, mean arm O2 extraction correlated with the P(O2) value that causes hemoglobin to be 50% saturated (P50: r = 0.93, P < 0.05), but for a given value of P50, O2 extraction was always higher in the legs than in the arms. Mean capillary muscle O2 conductance of the arm during double poling was 14.5 (SD 2.6) ml.min(-1).mmHg(-1), and mean capillary P(O2) was 47.7 (SD 2.6) mmHg. Corresponding values for the legs during maximal exercise were 48.3 (SD 13.0) ml.min(-1).mmHg(-1) and 33.8 (SD 2.6) mmHg, respectively. Because conditions for O2 off-loading from the hemoglobin are similar in leg and arm muscles, the observed differences in maximal arm and leg O2 extraction should be attributed to other factors, such as a higher heterogeneity in blood flow distribution, shorter mean transit time, smaller diffusing area, and larger diffusing distance, in arms than in legs.
Resumo:
Treatment with recombinant human erythropoietin (rhEpo) induces a rise in blood oxygen-carrying capacity (CaO(2)) that unequivocally enhances maximal oxygen uptake (VO(2)max) during exercise in normoxia, but not when exercise is carried out in severe acute hypoxia. This implies that there should be a threshold altitude at which VO(2)max is less dependent on CaO(2). To ascertain which are the mechanisms explaining the interactions between hypoxia, CaO(2) and VO(2)max we measured systemic and leg O(2) transport and utilization during incremental exercise to exhaustion in normoxia and with different degrees of acute hypoxia in eight rhEpo-treated subjects. Following prolonged rhEpo treatment, the gain in systemic VO(2)max observed in normoxia (6-7%) persisted during mild hypoxia (8% at inspired O(2) fraction (F(I)O(2)) of 0.173) and was even larger during moderate hypoxia (14-17% at F(I)O(2) = 0.153-0.134). When hypoxia was further augmented to F(I)O(2) = 0.115, there was no rhEpo-induced enhancement of systemic VO(2)max or peak leg VO(2). The mechanism highlighted by our data is that besides its strong influence on CaO(2), rhEpo was found to enhance leg VO(2)max in normoxia through a preferential redistribution of cardiac output toward the exercising legs, whereas this advantageous effect disappeared during severe hypoxia, leaving augmented CaO(2) alone insufficient for improving peak leg O(2) delivery and VO(2). Finally, that VO(2)max was largely dependent on CaO(2) during moderate hypoxia but became abruptly CaO(2)-independent by slightly increasing the severity of hypoxia could be an indirect evidence of the appearance of central fatigue.
Resumo:
[EN] That muscular blood flow may reach 2.5 l kg(-1) min(-1) in the quadriceps muscle has led to the suggestion that muscular vascular conductance must be restrained during whole body exercise to avoid hypotension. The main aim of this study was to determine the maximal arm and leg muscle vascular conductances (VC) during leg and arm exercise, to find out if the maximal muscular vasodilatory response is restrained during maximal combined arm and leg exercise. Six Swedish elite cross-country skiers, age (mean +/-s.e.m.) 24 +/- 2 years, height 180 +/- 2 cm, weight 74 +/- 2 kg, and maximal oxygen uptake (VO(2,max)) 5.1 +/- 0.1 l min(-1) participated in the study. Femoral and subclavian vein blood flows, intra-arterial blood pressure, cardiac output, as well as blood gases in the femoral and subclavian vein, right atrium and femoral artery were determined during skiing (roller skis) at approximately 76% of VO(2,max) and at VO(2,max) with different techniques: diagonal stride (combined arm and leg exercise), double poling (predominantly arm exercise) and leg skiing (predominantly leg exercise). During submaximal exercise cardiac output (26-27 l min(-1)), mean blood pressure (MAP) (approximately 87 mmHg), systemic VC, systemic oxygen delivery and pulmonary VO2(approximately 4 l min(-1)) attained similar values regardless of exercise mode. The distribution of cardiac output was modified depending on the musculature engaged in the exercise. There was a close relationship between VC and VO2 in arms (r= 0.99, P < 0.001) and legs (r= 0.98, P < 0.05). Peak arm VC (63.7 +/- 5.6 ml min(-1) mmHg(-1)) was attained during double poling, while peak leg VC was reached at maximal exercise with the diagonal technique (109.8 +/- 11.5 ml min(-1) mmHg(-1)) when arm VC was 38.8 +/- 5.7 ml min(-1) mmHg(-1). If during maximal exercise arms and legs had been vasodilated to the observed maximal levels then mean arterial pressure would have dropped at least to 75-77 mmHg in our experimental conditions. It is concluded that skeletal muscle vascular conductance is restrained during whole body exercise in the upright position to avoid hypotension.
Resumo:
[EN] Acute hypoxia (AH) reduces maximal O2 consumption (VO2 max), but after acclimatization, and despite increases in both hemoglobin concentration and arterial O2 saturation that can normalize arterial O2 concentration ([O2]), VO2 max remains low. To determine why, seven lowlanders were studied at VO2 max (cycle ergometry) at sea level (SL), after 9-10 wk at 5,260 m [chronic hypoxia (CH)], and 6 mo later at SL in AH (FiO2 = 0.105) equivalent to 5,260 m. Pulmonary and leg indexes of O2 transport were measured in each condition. Both cardiac output and leg blood flow were reduced by approximately 15% in both AH and CH (P < 0.05). At maximal exercise, arterial [O2] in AH was 31% lower than at SL (P < 0.05), whereas in CH it was the same as at SL due to both polycythemia and hyperventilation. O2 extraction by the legs, however, remained at SL values in both AH and CH. Although at both SL and in AH, 76% of the cardiac output perfused the legs, in CH the legs received only 67%. Pulmonary VO2 max (4.1 +/- 0.3 l/min at SL) fell to 2.2 +/- 0.1 l/min in AH (P < 0.05) and was only 2.4 +/- 0.2 l/min in CH (P < 0.05). These data suggest that the failure to recover VO2 max after acclimatization despite normalization of arterial [O2] is explained by two circulatory effects of altitude: 1) failure of cardiac output to normalize and 2) preferential redistribution of cardiac output to nonexercising tissues. Oxygen transport from blood to muscle mitochondria, on the other hand, appears unaffected by CH.
Resumo:
[EN] We hypothesized that reliance on lactate as a means of energy distribution is higher after a prolonged period of acclimatization (9 wk) than it is at sea level due to a higher lactate Ra and disposal from active skeletal muscle. To evaluate this hypothesis, six Danish lowlanders (25 +/- 2 yr) were studied at rest and during 20 min of bicycle exercise at 146 W at sea level (SL) and after 9 wk of acclimatization to 5,260 m (Alt). Whole body glucose Ra was similar at SL and Alt at rest and during exercise. Lactate Ra was also similar for the two conditions at rest; however, during exercise, lactate Ra was substantially lower at SL (65 micro mol. min(-1). kg body wt(-1)) than it was at Alt (150 micro mol. min(-1). kg body wt(-1)) at the same exercise intensity. During exercise, net lactate release was approximately 6-fold at Alt compared with SL, and related to this, tracer-calculated leg lactate uptake and release were both 3- or 4-fold higher at Alt compared with SL. The contribution of the two legs to glucose disposal was similar at SL and Alt; however, the contribution of the two legs to lactate Ra was significantly lower at rest and during exercise at SL (27 and 81%) than it was at Alt (45 and 123%). In conclusion, at rest and during exercise at the same absolute workload, CHO and blood glucose utilization were similar at SL and at Alt. Leg net lactate release was severalfold higher, and the contribution of leg lactate release to whole body lactate Ra was higher at Alt compared with SL. During exercise, the relative contribution of lactate oxidation to whole body CHO oxidation was substantially higher at Alt compared with SL as a result of increased uptake and subsequent oxidation of lactate by the active skeletal muscles.
Resumo:
[EN] 1. The present study examined whether reductions in muscle blood flow with exercise-induced dehydration would reduce substrate delivery and metabolite and heat removal to and from active skeletal muscles during prolonged exercise in the heat. A second aim was to examine the effects of dehydration on fuel utilisation across the exercising leg and identify factors related to fatigue. 2. Seven cyclists performed two cycle ergometer exercise trials in the heat (35 C; 61 +/- 2 % of maximal oxygen consumption rate, VO2,max), separated by 1 week. During the first trial (dehydration, DE), they cycled until volitional exhaustion (135 +/- 4 min, mean +/- s.e.m.), while developing progressive DE and hyperthermia (3.9 +/- 0.3 % body weight loss and 39.7 +/- 0.2 C oesophageal temperature, Toes). On the second trial (control), they cycled for the same period of time maintaining euhydration by ingesting fluids and stabilising Toes at 38.2 +/- 0.1 degrees C. 3. After 20 min of exercise in both trials, leg blood flow (LBF) and leg exchange of lactate, glucose, free fatty acids (FFA) and glycerol were similar. During the 20 to 135 +/- 4 min period of exercise, LBF declined significantly in DE but tended to increase in control. Therefore, after 120 and 135 +/- 4 min of DE, LBF was 0.6 +/- 0.2 and 1.0 +/- 0.3 l min-1 lower (P < 0.05), respectively, compared with control. 4. The lower LBF after 2 h in DE did not alter glucose or FFA delivery compared with control. However, DE resulted in lower (P < 0.05) net FFA uptake and higher (P < 0.05) muscle glycogen utilisation (45 %), muscle lactate accumulation (4.6-fold) and net lactate release (52 %), without altering net glycerol release or net glucose uptake. 5. In both trials, the mean convective heat transfer from the exercising legs to the body core ranged from 6.3 +/- 1.7 to 7.2 +/- 1.3 kJ min-1, thereby accounting for 35-40 % of the estimated rate of heat production ( approximately 18 kJ min-1). 6. At exhaustion in DE, blood lactate values were low whereas blood glucose and muscle glycogen levels were still high. Exhaustion coincided with high body temperature ( approximately 40 C). 7. In conclusion, the present results demonstrate that reductions in exercising muscle blood flow with dehydration do not impair either the delivery of glucose and FFA or the removal of lactate during moderately intense prolonged exercise in the heat. However, dehydration during exercise in the heat elevates carbohydrate oxidation and lactate production. A major finding is that more than one-half of the metabolic heat liberated in the contracting leg muscles is dissipated directly to the surrounding environment. The present results indicate that hyperthermia, rather than altered metabolism, is the main factor underlying the early fatigue with dehydration during prolonged exercise in the heat.
Resumo:
[EN] 1. The present study examined whether the blood flow to exercising muscles becomes reduced when cardiac output and systemic vascular conductance decline with dehydration during prolonged exercise in the heat. A secondary aim was to determine whether the upward drift in oxygen consumption (VO2) during prolonged exercise is confined to the active muscles. 2. Seven euhydrated, endurance-trained cyclists performed two bicycle exercise trials in the heat (35 C; 40-50 % relative humidity; 61 +/- 2 % of maximal VO2), separated by 1 week. During the first trial (dehydration trial, DE), they bicycled until volitional exhaustion (135 +/- 4 min, mean +/- s.e.m.), while developing progressive dehydration and hyperthermia (3.9 +/- 0.3 % body weight loss; 39.7 +/- 0.2 C oesophageal temperature, Toes). In the second trial (control trial), they bicycled for the same period of time while maintaining euhydration by ingesting fluids and stabilizing Toes at 38.2 +/- 0.1 C after 30 min exercise. 3. In both trials, cardiac output, leg blood flow (LBF), vascular conductance and VO2 were similar after 20 min exercise. During the 20 min-exhaustion period of DE, cardiac output, LBF and systemic vascular conductance declined significantly (8-14 %; P < 0.05) yet muscle vascular conductance was unaltered. In contrast, during the same period of control, all these cardiovascular variables tended to increase. After 135 +/- 4 min of DE, the 2.0 +/- 0.6 l min-1 lower blood flow to the exercising legs accounted for approximately two-thirds of the reduction in cardiac output. Blood flow to the skin also declined markedly as forearm blood flow was 39 +/- 8 % (P < 0.05) lower in DE vs. control after 135 +/- 4 min. 4. In both trials, whole body VO2 and leg VO2 increased in parallel and were similar throughout exercise. The reduced leg blood flow in DE was accompanied by an even greater increase in femoral arterial-venous O2 (a-vO2) difference. 5. It is concluded that blood flow to the exercising muscles declines significantly with dehydration, due to a lowering in perfusion pressure and systemic blood flow rather than increased vasoconstriction. Furthermore, the progressive increase in oxygen consumption during exercise is confined to the exercising skeletal muscles.