2 resultados para Large isoform of rubisco activase

em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España


Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] Playa Barca is a 370 m long beach located within the system of the Leeward beaches on the Jandía peninsula, Fuerteventura. This system of beaches represents one of the major sources of economic income to the island, both because of its natural landscape that attract a specific type of tourism, and because of its particular climate conditions that make these beaches ideal for practicing wind-water sports. Nevertheless, in the past decades, this area has suffered from a significant and worrying coastline retreat. In order to look for an explanation to this retreat, five topographic surveys were carried out in October 1999, February 2001, February 2002, February 2003 and February 2013 to track the beach behavior in the last 15 years. A total station Topcon GTS-303D was used for this purpose. Surveys were carried out during low spring tides, so that the outer limit was the furthest possible depending on wave conditions. The inner limit covered part of the dunes in the backshore. From these topographic data both coastline changes and the sedimentary balance have been obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] In this paper we show that a classic optical flow technique by Nagel and Enkelmann can be regarded as an early anisotropic diffusion method with a diffusion tensor. We introduce three improvements into the model formulation that avoid inconsistencies caused by centering the brightness term and the smoothness term in different images use a linear scale-space focusing strategy from coarse to fine scales for avoiding convergence to physically irrelevant local minima, and create an energy functional that is invariant under linear brightness changes.  Applying a gradient descent method to the resulting energy functional leads to a system of diffusion-reaction equations. We prove that this system has a unique solution under realistic assumptions on the initial data, and we present an efficient linear implicit numerical scheme in detail. Our method creates flow fields with 100% density over the entire image domain, it is robust under a large range of parameter variations, and it can recover displacement fields that are far beyond the typical one-pixel limits which are characteristic for many differential methods for determining optical flow. We show that it performs better than the classic optical flow methods with 100%  density that are evaluated by Barron et al. (1994). Our software is available from the Internet.