5 resultados para Lagrange

em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España


Relevância:

10.00% 10.00%

Publicador:

Resumo:

[EN] In this paper we study a variational problem derived from a computer vision application: video camera calibration with smoothing constraint. By video camera calibration we meanto estimate the location, orientation and lens zoom-setting of the camera for each video frame taking into account image visible features. To simplify the problem we assume that the camera is mounted on a tripod, in such case, for each frame captured at time t , the calibration is provided by 3 parameters : (1) P(t) (PAN) which represents the tripod vertical axis rotation, (2) T(t) (TILT) which represents the tripod horizontal axis rotation and (3) Z(t) (CAMERA ZOOM) the camera lens zoom setting. The calibration function t -> u(t) = (P(t),T(t),Z(t)) is obtained as the minima of an energy function I[u] . In thIs paper we study the existence of minima of such energy function as well as the solutions of the associated Euler-Lagrange equations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[EN] We present an energy based approach to estimate a dense disparity map from a set of two weakly calibrated stereoscopic images while preserving its discontinuities resulting from image boundaries. We first derive a simplified expression for the disparity that allows us to estimate it from a stereo pair of images using an energy minimization approach. We assume that the epipolar geometry is known, and we include this information in the energy model. Discontinuities are preserved by means of a regularization term based on the Nagel-Enkelmann operator. We investigate the associated Euler-Lagrange equation of the energy functional, and we approach the solution of the underlying partial differential equation (PDE) using a gradient descent method The resulting parabolic problem has a unique solution. In order to reduce the risk to be trapped within some irrelevant local minima during the iterations, we use a focusing strategy based on a linear scalespace. Experimental results on both synthetic and real images arere presented to illustrate the capabilities of this PDE and scale-space based method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[EN] In the last years we have developed some methods for 3D reconstruction. First we began with the problem of reconstructing a 3D scene from a stereoscopic pair of images. We developed some methods based on energy functionals which produce dense disparity maps by preserving discontinuities from image boundaries. Then we passed to the problem of reconstructing a 3D scene from multiple views (more than 2). The method for multiple view reconstruction relies on the method for stereoscopic reconstruction. For every pair of consecutive images we estimate a disparity map and then we apply a robust method that searches for good correspondences through the sequence of images. Recently we have proposed several methods for 3D surface regularization. This is a postprocessing step necessary for smoothing the final surface, which could be afected by noise or mismatch correspondences. These regularization methods are interesting because they use the information from the reconstructing process and not only from the 3D surface. We have tackled all these problems from an energy minimization approach. We investigate the associated Euler-Lagrange equation of the energy functional, and we approach the solution of the underlying partial differential equation (PDE) using a gradient descent method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[EN] In this paper we present a new model for optical flow calculation using a variational formulation which preserves discontinuities of the flow much better than classical methods. We study the Euler-Lagrange equations asociated to the variational problem. In the case of quadratic energy, we show the existence and uniqueness of the corresponding evolution problem. Since our method avoid linearization in the optical flow constraint, it can recover large displacement in the scene. We avoid convergence to irrelevant local minima by embedding our method into a linear scale-space framework and using a focusing strategy from coarse to fine scales.