2 resultados para LOW-DOSE METHOTREXATE

em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España


Relevância:

40.00% 40.00%

Publicador:

Resumo:

[EN] Background: Either higher levels of initial DNA damage or lower levels of radiation-induced apoptosis in peripheral blood lymphocytes have been associated to increased risk for develop late radiation-induced toxicity. It has been recently published that these two predictive tests are inversely related. The aim of the present study was to investigate the combined role of both tests in relation to clinical radiation-induced toxicity in a set of breast cancer patients treated with high dose hyperfractionated radical radiotherapy. Methods: Peripheral blood lymphocytes were taken from 26 consecutive patients with locally advanced breast carcinoma treated with high-dose hyperfractioned radical radiotherapy. Acute and late cutaneous and subcutaneous toxicity was evaluated using the Radiation Therapy Oncology Group morbidity scoring schema. The mean follow-up of survivors (n = 13) was 197.23 months. Radiosensitivity of lymphocytes was quantified as the initial number of DNA double-strand breaks induced per Gy and per DNA unit (200 Mbp). Radiation-induced apoptosis (RIA) at 1, 2 and 8 Gy was measured by flow cytometry using annexin V/propidium iodide. Results: Mean DSB/Gy/DNA unit obtained was 1.70 ± 0.83 (range 0.63-4.08; median, 1.46). Radiation-induced apoptosis increased with radiation dose (median 12.36, 17.79 and 24.83 for 1, 2, and 8 Gy respectively). We observed that those "expected resistant patients" (DSB values lower than 1.78 DSB/Gy per 200 Mbp and RIA values over 9.58, 14.40 or 24.83 for 1, 2 and 8 Gy respectively) were at low risk of suffer severe subcutaneous late toxicity (HR 0.223, 95%CI 0.073-0.678, P = 0.008; HR 0.206, 95%CI 0.063-0.677, P = 0.009; HR 0.239, 95%CI 0.062-0.929, P = 0.039, for RIA at 1, 2 and 8 Gy respectively) in multivariate analysis. Conclusions: A radiation-resistant profile is proposed, where those patients who presented lower levels of initial DNA damage and higher levels of radiation induced apoptosis were at low risk of suffer severe subcutaneous late toxicity after clinical treatment at high radiation doses in our series. However, due to the small sample size, other prospective studies with higher number of patients are needed to validate these results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN]The present study aimed to determine the spawning efficacy, egg quality and quantity of captive breed meagre induced with a single gonadotrophin-releasing hormone agonist (GnRHa) injection of 0, 1, 5, 10, 15, 20, 25, 30, 40 or 50 μg kg–1 to determine a recommended optimum dose to induce spawning. The doses 10, 15 and 20 μg kg–1 gave eggs with the highest quality (measured as: percentage of viability, floating, fertilisation and hatch) and quantity (measured as: total number of eggs, number of viable eggs, number of floating eggs, number of hatched larvae and number of larvae that reabsorbed the yolk sac). All egg quantity parameters were described by Gaussian regression analysis with R2 = 0.89 or R2 = 0.88. The Gaussian regression analysis identified that the optimal dose used was 15 μg kg–1. The regression analysis highlighted that this comprehensive study examined doses that ranged from low doses insufficient to stimulate a high spawning response (significantly lower egg quantities, p < 0.05) compared to 15 μg kg–1 through to high doses that stimulated the spawning of significantly lower egg quantities and eggs with significantly lower quality (egg viability). In addition, the latency period (time from hormone application to spawning) decreased with increasing doses to give a regression (R2 = 0.93), which suggests that higher doses accelerated oocyte development that in turn reduced egg quality and quantity. The identification of an optimal dose for the spawning of meagre, which has high aquaculture potential, represents an important advance for the Mediterranean aquaculture industry.