8 resultados para Juvenile probation
em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España
Resumo:
636927
Resumo:
Máster en Gestión Sostenible de Recursos Pesqueros
Resumo:
[EN] Aim: A key life-history component for many animals is the need for movement between different geographical locations at particular times. Green turtle (Chelonia mydas) hatchlings disperse from their natal location to spend an early pelagic stage in the ocean, followed by a neritic stage where small juveniles settle in coastal areas. In this study, we combined genetic and Lagrangian drifter data to investigate the connectivity between natal and foraging locations. In particular, we focus on the evidence for transatlantic transport.
Resumo:
[EN] Loggerhead sea turtles (Caretta caretta) originating from the Western Atlantic carry out one of the largest marine migrations, reaching the eastern Atlantic and Mediterranean Sea. It has been proposed that this transatlantic journey is simply a consequence of drifting, with the lack of a target destination and a passive dispersal with oceanic currents. This predicts that the size of the source populations and geographic distance to the feeding grounds should play important roles in defining stock composition in the eastern Atlantic and Mediterranean Sea.
Resumo:
[EN] Background: Plasma biochemical and hematologic variables are important in the management of endangered sea turtles, such as loggerheads. However, studies on blood biochemistry and hematology of loggerheads are limited, and different concentrations according to variable criteria have been reported. Objective: The purpose of this study was to establish and compare baseline plasma chemistry and hematology values in Eastern Atlantic juvenile and adult nesting loggerhead sea turtles (Caretta caretta).
Resumo:
[EN] Green turtle hatchlings disperse away from their natal location to spend an early pelagic stage in the ocean, followed by a neritic stage where small juveniles settle in coastal areas. Here, we combined genetic and Lagrangian drifter data to investigate the connectivity between natal and foraging locations; particularly focussing on the evidence for transatlantic transport. Our results supported the general hypothesis that turtles tend to select foraging areas ‘closest-to-home’.