6 resultados para Hypoxia response element
em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España
Resumo:
[EN] Hypoxia affects O2 transport and aerobic exercise capacity. In two previous studies, conflicting results have been reported regarding whether O2 delivery to the muscle is increased with hypoxia or whether there is a more efficient O2 extraction to allow for compensation of the decreased O2 availability at submaximal and maximal exercise. To reconcile this discrepancy, we measured limb blood flow (LBF), cardiac output, and O2 uptake during two-legged knee-extensor exercise in eight healthy young men. They completed studies at rest, at two submaximal workloads, and at peak effort under normoxia (inspired O2 fraction 0.21) and two levels of hypoxia (inspired O2 fractions 0.16 and 0.11). During submaximal exercise, LBF increased in hypoxia and compensated for the decrement in arterial O2 content. At peak effort, however, our subjects did not achieve a higher cardiac output or LBF. Thus O2 delivery was not maintained and peak power output and leg O2 uptake were reduced proportionately. These data are consistent then with the findings of an increased LBF to compensate for hypoxemia at submaximal exercise, but no such increase occurs at peak effort despite substantial cardiac capacity for an elevation in LBF.
Resumo:
[EN] 1. One to five weeks of chronic exposure to hypoxia has been shown to reduce peak blood lactate concentration compared to acute exposure to hypoxia during exercise, the high altitude 'lactate paradox'. However, we hypothesize that a sufficiently long exposure to hypoxia would result in a blood lactate and net lactate release from the active leg to an extent similar to that observed in acute hypoxia, independent of work intensity. 2. Six Danish lowlanders (25-26 years) were studied during graded incremental bicycle exercise under four conditions: at sea level breathing either ambient air (0 m normoxia) or a low-oxygen gas mixture (10 % O(2) in N(2), 0 m acute hypoxia) and after 9 weeks of acclimatization to 5260 m breathing either ambient air (5260 m chronic hypoxia) or a normoxic gas mixture (47 % O(2) in N(2), 5260 m acute normoxia). In addition, one-leg knee-extensor exercise was performed during 5260 m chronic hypoxia and 5260 m acute normoxia. 3. During incremental bicycle exercise, the arterial lactate concentrations were similar at sub-maximal work at 0 m acute hypoxia and 5260 m chronic hypoxia but higher compared to both 0 m normoxia and 5260 m acute normoxia. However, peak lactate concentration was similar under all conditions (10.0 +/- 1.3, 10.7 +/- 2.0, 10.9 +/- 2.3 and 11.0 +/- 1.0 mmol l(-1)) at 0 m normoxia, 0 m acute hypoxia, 5260 m chronic hypoxia and 5260 m acute normoxia, respectively. Despite a similar lactate concentration at sub-maximal and maximal workload, the net lactate release from the leg was lower during 0 m acute hypoxia (peak 8.4 +/- 1.6 mmol min(-1)) than at 5260 m chronic hypoxia (peak 12.8 +/- 2.2 mmol min(-1)). The same was observed for 0 m normoxia (peak 8.9 +/- 2.0 mmol min(-1)) compared to 5260 m acute normoxia (peak 12.6 +/- 3.6 mmol min(-1)). Exercise after acclimatization with a small muscle mass (one-leg knee-extensor) elicited similar lactate concentrations (peak 4.4 +/- 0.2 vs. 3.9 +/- 0.3 mmol l(-1)) and net lactate release (peak 16.4 +/- 1.8 vs. 14.3 mmol l(-1)) from the active leg at 5260 m chronic hypoxia and 5260 m acute normoxia. 4. In conclusion, in lowlanders acclimatized for 9 weeks to an altitude of 5260 m, the arterial lactate concentration was similar at 0 m acute hypoxia and 5260 m chronic hypoxia. The net lactate release from the active leg was higher at 5260 m chronic hypoxia compared to 0 m acute hypoxia, implying an enhanced lactate utilization with prolonged acclimatization to altitude. The present study clearly shows the absence of a lactate paradox in lowlanders sufficiently acclimatized to altitude.
Resumo:
[EN] Vaults are evolutionary highly conserved ribonucleoproteins particles with a hollow barrel-like structure. The main component of vaults represents the 110 kDa major vault protein (MVP), whereas two minor vaults proteins comprise the 193 kDa vault poly(ADP-ribose) polymerase (vPARP) and the 240 kDa telomerase-associated protein-1 (TEP-1). Additionally, at least one small and untranslated RNA is found as a constitutive component. MVP seems to play an important role in the development of multidrug resistance. This particle has also been implicated in the regulation of several cellular processes including transport mechanisms, signal transmission and immune responses. Vaults are considered a prognostic marker for different cancer types. The level of MVP expression predicts the clinical outcome after chemotherapy in different tumour types. Recently, new roles have been assigned to MVP and vaults including the association with the insulin-like growth factor-1, hypoxia-inducible factor-1alpha, and the two major DNA double-strand break repair machineries: non-homologous endjoining and homologous recombination. Furthermore, MVP has been proposed as a useful prognostic factor associated with radiotherapy resistance. Here, we review these novel actions of vaults and discuss a putative role of MVP and vaults in the response to radiotherapy.
Resumo:
[EN]This Ph. D. thesis presents a simple and stable procedure for the estimation of periods and dampings of pile shear buildings taking soil-structure interaction into account. The coupled-system response is obtained by using a substructuring model. A boundary element-finite element coupling formulation is used to compute impedances and kinematic interaction factors of the pile group configurations under investigation. The proposed procedure is applied to perform parametric analyses to determine the influence of the main parameters of soil-structure interaction problems on the dynamic response of the superstructure. The scope of this thesis also encompasses the study of foundations including battered piles.
Resumo:
[EN]An analysis of the influence that reservoir levels and bottom sediment properties (especially on the degree of saturation) have on the dynamic response of arch dams is caried out. For this purpose, a Boundary Element Model developed by the authors that allows the direct dynamic study of problems that incorporate scalar, viscoelastic and poroelastic media is used.
Resumo:
[EN] This work studies the structure-soil-structure interaction (SSSI) effects on the dynamic response of nearby piled structures under obliquely-incident shear waves. For this purpose, a three-dimensional, frequency-domain, coupled boundary element-finite (BEM-FEM) model is used to analyse the response of configuration of three buildings aligned parallel to the horizontal component of the wave propagation direction.