7 resultados para Hydrological forecasting.
em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España
Resumo:
[EN] Background: Spain has gone from a surplus to a shortage of medical doctors in very few years. Medium and long-term planning for health professionals has become a high priority for health authorities. Methods: We created a supply and demand/need simulation model for 43 medical specialties using system dynamics. The model includes demographic, education and labour market variables. Several scenarios were defined. Variables controllable by health planners can be set as parameters to simulate different scenarios. The model calculates the supply and the deficit or surplus. Experts set the ratio of specialists needed per 1000 inhabitants with a Delphi method. Results: In the scenario of the baseline model with moderate population growth, the deficit of medical specialists will grow from 2% at present (2800 specialists) to 14.3% in 2025 (almost 21 000). The specialties with the greatest medium-term shortages are Anesthesiology, Orthopedic and Traumatic Surgery, Pediatric Surgery, Plastic Aesthetic and Reparatory Surgery, Family and Community Medicine, Pediatrics, Radiology, and Urology. Conclusions: The model suggests the need to increase the number of students admitted to medical school. Training itineraries should be redesigned to facilitate mobility among specialties. In the meantime, the need to make more flexible the supply in the short term is being filled by the immigration of physicians from new members of the European Union and from Latin America.
Resumo:
[EN] Size-abundance spectra (SAS) were analyzed in different phytoplankton assemblages of the Alborán Sea collected in areas with contrasting hydrological features (upwelling areas and anticyclonic gyre). Abundance of micro-plankton cells decreased following the hydrological gradient from the most productive stations towards offshore stations. This size-fraction of phytoplankton was dominated by diatoms. Pico-plankton followed an opposite gradient. Concordantly, the slope of the SAS trended to decrease from coastal areas (upwelling) towards the anticyclonic gyre. However, phytoplankton assemblages featuring similar SAS values presented a quite different taxonomical composition of their diatom communities. According to the previous available information about the taxonomical composition of the phytoplankton communities in the Alborán Sea, these differences in diatom composition are indicative of differences in productivity of the phytoplankton. Consequently, the utility of phytoplankton SAS as an indicator of changes in the phytoplankton communities of the Alborán Sea is discussed.
Resumo:
[EN]This paper describes a wildfi re forecasting application based on a 3D virtual environment and a fi re simulation engine. A novel open source framework is presented for the development of 3D graphics applications over large geographic areas, off ering high performance 3D visualization and powerful interaction tools for the Geographic Information Systems (GIS) community. The application includes a remote module that allows simultaneous connection of several users for monitoring a real wildfi re event.
Resumo:
[EN]In this paper we introduce a new methodology for wind field forecasting over complex terrain. The idea is to use the predictions of the HARMONIE mesoscale model as the input data for an adaptive finite element mass consistent wind model [1, 2]. A description of the HARMONIE Non-Hydrostatic Dynamics can be found in [3]. The HARMONIE results (obtained with a maximum resolution about 1 Km) are refined in a local scale (about a few meters)...
Resumo:
[EN]Ensemble forecasting [1] is a methodology to deal with uncertainties in the numerical wind prediction. In this work we propose to apply ensemble methods to the adaptive wind forecasting model presented in [2]. The wind _eld forecasting is based on a mass-consistent model and a log-linear wind pro_le using as input data the resulting forecast wind from Harmonie [3], a Non-Hydrostatic Dynamic model. The mass-consistent model parameters are estimated by using genetic algorithms [4]. The mesh is generated using the meccano method [5] and adapted to the geometry. The main source of uncertainties in this model is the parameter estimation and the in- trinsic uncertainties of the Harmonie Model…
Resumo:
[EN]Ensemble forecasting is a methodology to deal with uncertainties in the numerical wind prediction. In this work we propose to apply ensemble methods to the adaptive wind forecasting model presented in. The wind field forecasting is based on a mass-consistent model and a log-linear wind profile using as input data the resulting forecast wind from Harmonie, a Non-Hydrostatic Dynamic model used experimentally at AEMET with promising results. The mass-consistent model parameters are estimated by using genetic algorithms. The mesh is generated using the meccano method and adapted to the geometry…