5 resultados para Human Mitochondrial-dna
em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España
Resumo:
[EN] Several weeks of intense endurance training enhances mitochondrial biogenesis in humans. Whether a single bout of exercise alters skeletal muscle mitochondrial DNA (mtDNA) content remains unexplored. Double-stranded mtDNA, estimated by slot-blot hybridization and real time PCR and expressed as mtDNA-to-nuclear DNA ratio (mtDNA/nDNA) was obtained from the vastus lateralis muscle of healthy human subjects to investigate whether skeletal muscle mtDNA changes during fatiguing and nonfatiguing prolonged moderate intensity [2.0-2.5 h; approximately 60% maximal oxygen consumption (Vo(2 max))] and short repeated high-intensity exercise (5-8 min; approximately 110% Vo(2 max)). In control resting and light exercise (2 h; approximately 25% Vo(2 max)) studies, mtDNA/nDNA did not change. Conversely, mtDNA/nDNA declined after prolonged fatiguing exercise (0.863 +/- 0.061 vs. 1.101 +/- 0.067 at baseline; n = 14; P = 0.005), remained lower after 24 h of recovery, and was restored after 1 wk. After nonfatiguing prolonged exercise, mtDNA/nDNA tended to decline (n = 10; P = 0.083) but was reduced after three repeated high-intensity exercise bouts (0.900 +/- 0.049 vs. 1.067 +/- 0.071 at baseline; n = 7; P = 0.013). Our findings indicate that prolonged and short repeated intense exercise can lead to significant reductions in human skeletal muscle mtDNA content, which might function as a signal stimulating mitochondrial biogenesis with exercise training.
Resumo:
[EN] Complex population structure has been described for the loggerhead sea turtle (Caretta caretta), revealing lower levels of population genetic structure in nuclear compared to mitochondrial DNA assays. This may result from mating during spatially overlapping breeding migrations, or male-biased dispersal as previously found for the green turtle (Chelonia mydas). To further investigate these multiple possibilities, we carried out a comparative analysis from twelve newly developed microsatellite loci and the mitochondrial DNA control region (~804 bp) in adult females of the Cape Verde Islands (n=158), and Georgia, USA (n=17).
Resumo:
[EN] The hawksbill sea turtle (Eretmochelys imbricata) is a circumglobal tropical species listed as Critically Endangered by the IUCN. While it is known that at least one stock occurs around the rookeries of São Tome and Principe and Bioko Islands, the eastern Atlantic remains genetically unexplored. We present the first analysis of mitochondrial DNA (mtDNA) sequences (n = 28) of hawksbill juveniles in a foraging aggregation at the Cape Verde Islands, an archipelago located in the eastern Atlantic. The mean size (minimun curve carapace length) of the studied individuals was 42.45 cm.
Resumo:
[EN] Despite the considerable population genetic and connectivity research on the hawksbill sea turtle (Eretmochelys imbricata) and the species being critically endangered, the eastern Atlantic remains understudied. We present the first analysis of mitochondrial DNA (mtDNA) sequences (n = 28) of hawksbill juveniles in a foraging aggregation at the Cape Verde Islands. Our results showed three haplotypes non-reported in any nesting population to date, with one of them accounting for 68% of the samples. These three haplotypes were closely related to each other but highly divergent from all known Caribbean and Western Atlantic haplotypes.
Resumo:
[EN] The presence of the green and Kemp's ridley turtles is rare at Atlantic and Mediterranean Spanish waters, but the records have increased during the last decades. We reported a new set of records and reviewed all the historical observations of these species. The analysis of a mitochondrial DNA fragment of the newest records provided insights about the origin of the individuals. The Kemp's ridley turtles arrived from the western Atlantic nesting beaches, although the discovering of a new haplotype suggested the existence of an unknown or low sampled nesting area of origin.