3 resultados para Hemodilution

em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España


Relevância:

10.00% 10.00%

Publicador:

Resumo:

[EN] This study was performed to test the hypothesis that administration of recombinant human erythropoietin (rHuEpo) in humans increases maximal oxygen consumption by augmenting the maximal oxygen carrying capacity of blood. Systemic and leg oxygen delivery and oxygen uptake were studied during exercise in eight subjects before and after 13 wk of rHuEpo treatment and after isovolemic hemodilution to the same hemoglobin concentration observed before the start of rHuEpo administration. At peak exercise, leg oxygen delivery was increased from 1,777.0+/-102.0 ml/min before rHuEpo treatment to 2,079.8+/-120.7 ml/min after treatment. After hemodilution, oxygen delivery was decreased to the pretreatment value (1,710.3+/-138.1 ml/min). Fractional leg arterial oxygen extraction was unaffected at maximal exercise; hence, maximal leg oxygen uptake increased from 1,511.0+/-130.1 ml/min before treatment to 1,793.0+/-148.7 ml/min with rHuEpo and decreased after hemodilution to 1,428.0+/-111.6 ml/min. Pulmonary oxygen uptake at peak exercise increased from 3,950.0+/-160.7 before administration to 4,254.5+/-178.4 ml/min with rHuEpo and decreased to 4,059.0+/-161.1 ml/min with hemodilution (P=0.22, compared with values before rHuEpo treatment). Blood buffer capacity remained unaffected by rHuEpo treatment and hemodilution. The augmented hematocrit did not compromise peak cardiac output. In summary, in healthy humans, rHuEpo increases maximal oxygen consumption due to augmented systemic and muscular peak oxygen delivery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[EN] With altitude acclimatization, blood hemoglobin concentration increases while plasma volume (PV) and maximal cardiac output (Qmax) decrease. This investigation aimed to determine whether reduction of Qmax at altitude is due to low circulating blood volume (BV). Eight Danish lowlanders (3 females, 5 males: age 24.0 +/- 0.6 yr; mean +/- SE) performed submaximal and maximal exercise on a cycle ergometer after 9 wk at 5,260 m altitude (Mt. Chacaltaya, Bolivia). This was done first with BV resulting from acclimatization (BV = 5.40 +/- 0.39 liters) and again 2-4 days later, 1 h after PV expansion with 1 liter of 6% dextran 70 (BV = 6.32 +/- 0.34 liters). PV expansion had no effect on Qmax, maximal O2 consumption (VO2), and exercise capacity. Despite maximal systemic O2 transport being reduced 19% due to hemodilution after PV expansion, whole body VO2 was maintained by greater systemic O2 extraction (P < 0.05). Leg blood flow was elevated (P < 0.05) in hypervolemic conditions, which compensated for hemodilution resulting in similar leg O2 delivery and leg VO2 during exercise regardless of PV. Pulmonary ventilation, gas exchange, and acid-base balance were essentially unaffected by PV expansion. Sea level Qmax and exercise capacity were restored with hyperoxia at altitude independently of BV. Low BV is not a primary cause for reduction of Qmax at altitude when acclimatized. Furthermore, hemodilution caused by PV expansion at altitude is compensated for by increased systemic O2 extraction with similar peak muscular O2 delivery, such that maximal exercise capacity is unaffected.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[EN] A universal O2 sensor presumes that compensation for impaired O2 delivery is triggered by low O2 tension, but in humans, comparisons of compensatory responses to altered arterial O2 content (CaO2) or tension (PaO2) have not been reported. To directly compare cardiac output (QTOT) and leg blood flow (LBF) responses to a range of CaO2 and PaO2, seven healthy young men were studied during two-legged knee extension exercise with control hemoglobin concentration ([Hb] = 144.4 +/- 4 g/l) and at least 1 wk later after isovolemic hemodilution ([Hb] = 115 +/- 2 g/l). On each study day, subjects exercised twice at 30 W and on to voluntary exhaustion with an FIO2 of 0.21 or 0.11. The interventions resulted in two conditions with matched CaO2 but markedly different PaO2 (hypoxia and anemia) and two conditions with matched PaO2 and different CaO2 (hypoxia and anemia + hypoxia). PaO2 varied from 46 +/- 3 Torr in hypoxia to 95 +/- 3 Torr (range 37 to >100) in anemia (P < 0.001), yet LBF at exercise was nearly identical. However, as CaO2 dropped from 190 +/- 5 ml/l in control to 132 +/- 2 ml/l in anemia + hypoxia (P < 0.001), QTOT and LBF at 30 W rose to 12.8 +/- 0.8 and 7.2 +/- 0.3 l/min, respectively, values 23 and 47% above control (P < 0.01). Thus regulation of QTOT, LBF, and arterial O2 delivery to contracting intact human skeletal muscle is dependent for signaling primarily on CaO2, not PaO2. This finding suggests that factors related to CaO2 or [Hb] may play an important role in the regulation of blood flow during exercise in humans.