4 resultados para Geographical computer applications

em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España


Relevância:

80.00% 80.00%

Publicador:

Resumo:

[EN]Facial image processing is becoming widespread in human-computer applications, despite its complexity. High-level processes such as face recognition or gender determination rely on low-level routines that must e ectively detect and normalize the faces that appear in the input image. In this paper, a face detection and normalization system is described. The approach taken is based on a cascade of fast, weak classi ers that together try to determine whether a frontal face is present in the image.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] This abstract describes the development of a wildfire forecasting plugin using Capaware. Capaware is designed as an easy to use open source framework to develop 3D graphics applications over large geographic areas offering high performance 3D visualization and powerful interaction tools for the Geographic Information Systems (GIS) community.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN]This paper describes a wildfi re forecasting application based on a 3D virtual environment and a fi re simulation engine. A novel open source framework is presented for the development of 3D graphics applications over large geographic areas, off ering high performance 3D visualization and powerful interaction tools for the Geographic Information Systems (GIS) community. The application includes a remote module that allows simultaneous connection of several users for monitoring a real wildfi re event.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN]OpenCV includes di erent object detectors based on the Viola-Jones framework. Most of them are specialized to deal with the frontal face pattern and its inner elements: eyes, nose, and mouth. In this paper, we focus on the ear pattern detection, particularly when a head pro le or almost pro le view is present in the image. We aim at creating real-time ear detectors based on the general object detection framework provided with OpenCV. After training classi ers to detect left ears, right ears, and ears in general, the performance achieved is valid to be used to feed not only a head pose estimation system but also other applications such as those based on ear biometrics.