1 resultado para Gender-specific situational
em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España
Filtro por publicador
- Academic Archive On-line (Stockholm University; Sweden) (2)
- Academic Research Repository at Institute of Developing Economies (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- Aquatic Commons (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (8)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (8)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (2)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- Bioline International (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (54)
- Brock University, Canada (6)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- CentAUR: Central Archive University of Reading - UK (10)
- Central European University - Research Support Scheme (1)
- Cochin University of Science & Technology (CUSAT), India (1)
- Coffee Science - Universidade Federal de Lavras (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (9)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Cornell: DigitalCommons@ILR (1)
- Dalarna University College Electronic Archive (4)
- Digital Commons @ DU | University of Denver Research (3)
- Digital Commons at Florida International University (21)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (14)
- DigitalCommons@University of Nebraska - Lincoln (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (17)
- Fachlicher Dokumentenserver Paedagogik/Erziehungswissenschaften (10)
- Helda - Digital Repository of University of Helsinki (35)
- Indian Institute of Science - Bangalore - Índia (18)
- Instituto Politécnico de Viseu (1)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- National Center for Biotechnology Information - NCBI (1)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (1)
- QSpace: Queen's University - Canada (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (27)
- Queensland University of Technology - ePrints Archive (540)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (7)
- Research Open Access Repository of the University of East London. (1)
- School of Medicine, Washington University, United States (1)
- Scielo España (2)
- Universidad de Alicante (5)
- Universidad del Rosario, Colombia (3)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Técnica de Lisboa (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (3)
- Université de Montréal, Canada (11)
- University of Canberra Research Repository - Australia (1)
- University of Connecticut - USA (1)
- University of Queensland eSpace - Australia (34)
- University of Washington (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
[EN]Gender information may serve to automatically modulate interaction to the user needs, among other applications. Within the Computer Vision community, gender classification (GC) has mainly been accomplished with the facial pattern. Periocular biometrics has recently attracted researchers attention with successful results in the context of identity recognition. But, there is a lack of experimental evaluation of the periocular pattern for GC in the wild. The aim of this paper is to study the performance of this specific facial area in the currently most challenging large dataset for the problem.