5 resultados para Friction welding, FEM, saldatura, attrito, AA6082, microstruttura
em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España
Resumo:
[EN] 3D BEM-FEM coupling model is used to study the dynamic behavior of piled foundations in elastic layered soils in presenceof a rigid bedrock. Piles are modelled by FEM as beams according to the Bernoulli hpothesis, and every layer of the soil is modelled by BEM as a cointinuum, semi-infinite, isotropic, homogeneous, linear, viscoelastic medium.
Resumo:
[EN] This paper shows a BEM-FEM coupling model for the time harmonic dynamic analysis of piles and pile groups embeddes in an elastic half-space. Piles are modelled using Finite Elements (FEM) as a beam according to the Bernoulli hypothesis, while the soil modelled using Boundary Elements (BEM) as a continuum, semi-infinite, isotropic, homogeneous or zoned homogeneous, linear, viscoelastic medium.
Resumo:
[EN]The dynamic throug-soil interaction between nearby pile supported structures in a viscoelastic half-space, under incident S and Rayleigh waves, is numerically studied. To this end, a three-dimensional viscoelastic BEM-FEM formulation for the dynamic analysis of piles and pile groups in the frequency domain is used, where soil is modelled by BEM and piles are simulated by one-dimensional finite elements as Bernouilli beams.
Resumo:
[EN]This work presents a time-harmonic boundary elementfinite element three-dimensional model for the dynamic analysis of building structures founded on elastic or porelastic soils. The building foundation and soil domains are modelled as homogeneous, isotropic, elastic or poroelastic media using boundary elements.
A 2D BEM-FEM approach for time harmonic fluid-structure interaction analysis of thin elastic bodies.
Resumo:
[EN]This paper deals with two-dimensional time harmonic fluid-structure interaction problems when the fluid is at rest, and the elastic bodies have small thicknesses. A BEM-FEM numerical approach is used, where the BEM is applied to the fluid, and the structural FEM is applied to the thin elastic bodies.