5 resultados para Finite elements analysis
em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España
Resumo:
[EN]Ensemble forecasting is a methodology to deal with uncertainties in the numerical wind prediction. In this work we propose to apply ensemble methods to the adaptive wind forecasting model presented in. The wind field forecasting is based on a mass-consistent model and a log-linear wind profile using as input data the resulting forecast wind from Harmonie, a Non-Hydrostatic Dynamic model used experimentally at AEMET with promising results. The mass-consistent model parameters are estimated by using genetic algorithms. The mesh is generated using the meccano method and adapted to the geometry…
Resumo:
[EN] This paper shows a BEM-FEM coupling model for the time harmonic dynamic analysis of piles and pile groups embeddes in an elastic half-space. Piles are modelled using Finite Elements (FEM) as a beam according to the Bernoulli hypothesis, while the soil modelled using Boundary Elements (BEM) as a continuum, semi-infinite, isotropic, homogeneous or zoned homogeneous, linear, viscoelastic medium.
Resumo:
[EN]We present advances of the meccano method [1,2] for tetrahedral mesh generation and volumetric parameterization of solids. The method combines several former procedures: a mapping from the meccano boundary to the solid surface, a 3-D local refinement algorithm and a simultaneous mesh untangling and smoothing. The key of the method lies in defining a one-to-one volumetric transformation between the parametric and physical domains. Results with adaptive finite elements will be shown for several engineering problems. In addition, the application of the method to T-spline modelling and isogeometric analysis [3,4] of complex geometries will be introduced…
Resumo:
[EN] This work presents a 2D finite elements - boundary elements coupling model for the harmonic analysis of beam structures founded on viscoelastic domains. The beam structure is modeled by finite elements, whereas the soil is modeled as a homogeneous isotropic viscoelastic boundary element region. The coupling is enforced through a rigid boundary in which equilibrium and compatibility conditions are applied. Formulation and implementation are presented together with some application examples.
Resumo:
[EN]The dynamic throug-soil interaction between nearby pile supported structures in a viscoelastic half-space, under incident S and Rayleigh waves, is numerically studied. To this end, a three-dimensional viscoelastic BEM-FEM formulation for the dynamic analysis of piles and pile groups in the frequency domain is used, where soil is modelled by BEM and piles are simulated by one-dimensional finite elements as Bernouilli beams.