4 resultados para Eye detection

em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España


Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] This paper analyzes the detection and localization performance of the participating face and eye algorithms compared with the Viola Jones detector and four leading commercial face detectors. Performance is characterized under the different conditions and parameterized by per-image brightness and contrast. In localization accuracy for eyes, the groups/companies focusing on long-range face detection outperform leading commercial applications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

[EN]This paper describes in detail a real-time multiple face detection system for video streams. The system adds to the good performance provided by a window shift approach, the combination of different cues available in video streams due to temporal coherence. The results achieved by this combined solution outperform the basic face detector obtaining a 98% success rate for around 27000 images, providing additionally eye detection and a relation between the successive detections in time by means of detection threads.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

[EN]This paper describes a low-cost system that allows the user to visualize different glasses models in live video. The user can also move the glasses to adjust its position on the face. The system, which runs at 9.5 frames/s on general-purpose hardware, has a homeostatic module that keeps image parameters controlled. This is achieved by using a camera with motorized zoom, iris, white balance, etc. This feature can be specially useful in environments with changing illumination and shadows, like in an optical shop. The system also includes a face and eye detection module and a glasses management module.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN]This paper describes a face detection system which goes beyond traditional approaches normally designed for still images. First the video stream context is considered to apply the detector, and therefore, the resulting system is designed taking into consideration a main feature available in a video stream, i.e. temporal coherence. The resulting system builds a feature based model for each detected face, and searches them using various model information in the next frame. The results achieved for video stream processing outperform Rowley-Kanade's and Viola-Jones' solutions providing eye and face data in a reduced time with a notable correct detection rate.