2 resultados para Expense caloric
em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España
Resumo:
[EN] 1. This study examined the effects of caloric content (caloric density and the nature of calories) on the rate of gastric emptying using the double-sampling gastric aspiration technique. Four test meals of 600 ml (glucose, 0.1 kcal ml-1; pea and whey peptide hydrolysates, both 0.2 kcal ml-1; milk protein, 0.7 kcal ml-1) were tested in six healthy subjects in random order on four separate occasions. 2. The glucose solution was emptied the fastest with a half-time of 9.4 +/- 1.2 min (P < 0.05) and the milk protein the slowest with a half-time of 26.4 +/- 10.0 min (P < 0.05); the pea peptide hydrolysate and whey peptide hydrolysate solutions had half-times of emptying of 16.3 +/- 5.4 and 17.2 +/- 6.1 min, respectively. The rates of gastric emptying for the peptide hydrolysate solutions derived from different protein sources were not different. 3. Despite the lower rate of gastric emptying for the milk protein solution, the rate of caloric delivery to the duodenum during the early phase of the gastric emptying process was higher than that for the other three solutions (46.3 +/- 6, 63.5 +/- 22, 62.5 +/- 19 and 113.8 +/- 25 cal min-1 kg-1 for the glucose, pea peptide hydrolysate, whey peptide hydrolysate and milk protein meals, respectively; P < 0.05). The caloric density of the test solutions was linearly related to the half-time of gastric emptying (r = 0.96, P < 0.05) as well as to the rate at which calories were delivered to the duodenum (r = 0.99, P < 0.001). 4. This study demonstrates that the rate of gastric emptying is a function of the caloric density of the ingested meal and that a linear relationship exists between these variables. Furthermore, the nature of the calories seems to play a minor role in determining the rate of gastric emptying in humans.
Resumo:
[EN] Global warming is affecting all major ecosystems, including temperate reefs where canopy-forming seaweeds provide biogenic habitat. In contrast to the rapidly growing recognition of how climate affects the performance and distribution of individuals and populations, relatively little is known about possible links between climate and biogenic habitat structure. We examined the relationship between several ocean temperature characteristics, expressed on time-scales of days, months and years, on habitat patch characteristics on 24 subtidal temperate reefs along a latitudinal gradient (Western Australia; ca 34 to 27º S). Significant climate related variation in habitat structure was observed, even though the landscape cover of kelp and fucalean canopies did not change across the climate gradient: monospecific patches of kelp became increasingly dominant in warmer climates, at the expense of mixed kelp-fucalean canopies. The decline in mixed canopies was associated with an increase in the abundance of Sargassum spp., replacing a more diverse canopy assemblage of Scytothalia doryocarpa and several other large fucoids. There were no observed differences in the proportion of open gaps or gap characteristics. These habitat changes were closely related to patterns in minimum temperatures and temperature thresholds (days > 20 °C), presumably because temperate algae require cool periods for successful reproduction and recruitment (even if the adults can survive warmer temperatures). Although the observed habitat variation may appear subtle, similar structural differences have been linked to a range of effects on canopy-associated organisms through the provision of habitat and ecosystem engineering. Consequently, our study suggests that the magnitude of projected temperature increase is likely to cause changes in habitat structure and thereby indirectly affect numerous habitat-dependent plants and animals