4 resultados para Ernst II, Duke of Saxe-Coburg-Gotha, 1818-1893.

em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España


Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN]In this paper we review the novel meccano method. We summarize the main stages (subdivision, mapping, optimization) of this automatic tetrahedral mesh generation technique and we concentrate the study to complex genus-zero solids. In this case, our procedure only requires a surface triangulation of the solid. A crucial consequence of our method is the volume parametrization of the solid to a cube. We construct volume T-meshes for isogeometric analysis by using this result. The efficiency of the proposed technique is shown with several examples. A comparison between the meccano method and standard mesh generation techniques is introduced.-1…

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] Plant Tissue Culture, also called “micropropagation”, is the propagation of plants from different tissues (or explants) in a shorter time than conventional propagation, making use of the ability that many plant cells have to regenerate a whole plant (totipotency).There are two alternative mechanisms by which an explant can regenerate an entire plant, namely organogenesis and somatic embryogenesis. Since the last decades, the number of higher terrestrial plants species from which these techniques have been successfully applied has continually increased. However, few attempts have been carried out in marine plants. Previous seagrasses authors have focused their studies on i) vegetative propagation of rhizome fragments as explants in Ruppia maritima, Halophila engelmannii, Cymodocea nodosa and Posidonia oceanica; ii) culture of meristems in Heterozostera tasmanica, C. nodosa or P. oceanica; and iii) culture of germinated seeds on aseptic conditions, in Thalassia testudinum, H. ovalis, P. coriacea, P. oceanica, and H. decipiens. All these studies determine the most adequate culture medium for each species (seawater, nutrients, vitamins, carbon sources, etc...), often supplemented with different plant growth regulators and the necessary conditions for the culture maintenance, such as light and temperature. On the other hand, several studies have previously established protocols for cell or protoplast isolation in the species Zostera marina, Z. muelleri, P. oceanica, and C. nodosa, using shoots collected from natural meadows as original vegetal source, but further cell growth was never accomplished. Due to the absence of somatic embryogenesis or organogenetic studies in seagrasses we wonder: IS THE SUCCESSFUL APPLICATION OF TISSUE CULTURE TECHNIQUES POSSIBLE IN SEAGRASSES?