9 resultados para Embedded boundary method
em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España
Resumo:
[EN]A boundary element-finite element model is presented for the three-dimensional dynamic analysis of piled buildings in the frequency domain. Piles are modelled as compressible Euler-Bernoulli beams founded on a linear, isotropic, viscoelastic, zoned-homogeneous, unbounded layered soil, while multi-storey buildings are assumed to be comprised of vertical compressible piers and rigid slabs.
Resumo:
[EN]This Ph.D. thesis presents a general, robust methodology that may cover any type of 2D acoustic optimization problem. A procedure involving the coupling of Boundary Elements (BE) and Evolutionary Algorithms is proposed for systematic geometric modifications of road barriers that lead to designs with ever-increasing screening performance. Numerical simulations involving single- and multi-objective optimizations of noise barriers of varied nature are included in this document. results disclosed justify the implementation of this methodology by leading to optimal solutions of previously defined topologies that, in general, greatly outperform the acoustic efficiency of classical, widely used barrier designs normally erected near roads.
Resumo:
Programa de doctorado: Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería Instituto Universitario (SIANI)
Resumo:
[EN]The effectiveness and accuracy of the superposition method in assessing the dynamic stiffness and damping functions of embedded footings supported by vertical piles in homogeneous viscoelastic soil is addressed. To the end, the impedances of piled embedded footings are compared to those obtained by suporposing the impedance functions of the corresponding pile groups and embedded footing treated separately.
Resumo:
[EN]The meccano method is a novel and promising mesh generation technique for simultaneously creating adaptive tetrahedral meshes and volume parameterizations of a complex solid. The method combines several former procedures: a mapping from the meccano boundary to the solid surface, a 3-D local refinement algorithm and a simultaneous mesh untangling and smoothing. In this paper we present the main advantages of our method against other standard mesh generation techniques. We show that our method constructs meshes that can be locally refined by using the Kossaczky bisection rule and maintaining a high mesh quality. Finally, we generate volume T-mesh for isogeometric analysis, based on the volume parameterization obtained by the method…
Resumo:
[EN]We present a new strategy, based on the idea of the meccano method and a novel T-mesh optimization procedure, to construct a T-spline parameterization of 2D geometries for the application of isogeometric analysis. The proposed method only demands a boundary representation of the geometry as input data. The algorithm obtains, as a result, high quality parametric transformation between 2D objects and the parametric domain, the unit square. First, we define a parametric mapping between the input boundary of the object and the boundary of the parametric domain. Then, we build a T-mesh adapted to the geometric singularities of the domain in order to preserve the features of the object boundary with a desired tolerance...
Resumo:
[EN]We have recently introduced a new strategy, based on the meccano method [1, 2], to construct a T-spline parameterization of 2D and 3D geometries for the application of iso geometric analysis [3, 4]. The proposed method only demands a boundary representation of the geometry as input data. The algorithm obtains, as a result, high quality parametric transformation between the objects and the parametric domain, i.e. the meccano. The key of the method lies in de_ning an isomorphic transformation between the parametric and physical T-mesh _nding the optimal position of the interior nodes, once the meccano boundary nodes are mapped to the boundary of the physical domain…
Resumo:
[EN]We present a new method, based on the idea of the meccano method and a novel T-mesh optimization procedure, to construct a T-spline parameterization of 2D geometries for the application of isogeometric analysis. The proposed method only demands a boundary representation of the geometry as input data. The algorithm obtains, as a result, high quality parametric transformation between 2D objects and the parametric domain, the unit square. First, we define a parametric mapping between the input boundary of the object and the boundary of the parametric domain. Then, we build a T-mesh adapted to the geometric singularities of the domain in order to preserve the features of the object boundary with a desired tolerance…
Resumo:
[EN]This work introduces a new technique for tetrahedral mesh optimization. The procedure relocates boundary and inner nodes without changing the mesh topology. In order to maintain the boundary approximation while boundary nodes are moved, a local refinement of tetrahedra with faces on the solid boundary is necessary in some cases. New nodes are projected on the boundary by using a surface parameterization. In this work, the proposed method is applied to tetrahedral meshes of genus-zero solids that are generated by the meccano method. In this case, the solid boundary is automatically decomposed into six surface patches which are parameterized into the six faces of a cube with the Floater parameterization...