3 resultados para Electrochemical parametrization
em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España
Resumo:
[EN]The meccano method is a novel and promising mesh generation method for simultaneously creating adaptive tetrahedral meshes and volume parametrizations of a complex solid. We highlight the fact that the method requires minimum user intervention and has a low computational cost. The method builds a 3-D triangulation of the solid as a deformation of an appropriate tetrahedral mesh of the meccano. The new mesh generator combines an automatic parametrization of surface triangulations, a local refinement algorithm for 3-D nested triangulations and a simultaneous untangling and smoothing procedure. At present, the procedure is fully automatic for a genus-zero solid. In this case, the meccano can be a single cube. The efficiency of the proposed technique is shown with several applications...
Resumo:
[EN]In this paper we review the novel meccano method. We summarize the main stages (subdivision, mapping, optimization) of this automatic tetrahedral mesh generation technique and we concentrate the study to complex genus-zero solids. In this case, our procedure only requires a surface triangulation of the solid. A crucial consequence of our method is the volume parametrization of the solid to a cube. We construct volume T-meshes for isogeometric analysis by using this result. The efficiency of the proposed technique is shown with several examples. A comparison between the meccano method and standard mesh generation techniques is introduced.-1…
Resumo:
[EN]This work presents a novel approach to solve a two dimensional problem by using an adaptive finite element approach. The most common strategy to deal with nested adaptivity is to generate a mesh that represents the geometry and the input parameters correctly, and to refine this mesh locally to obtain the most accurate solution. As opposed to this approach, the authors propose a technique using independent meshes : geometry, input data and the unknowns. Each particular mesh is obtained by a local nested refinement of the same coarse mesh at the parametric space…