18 resultados para Biomass burning

em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The measurement of mesozooplankton biomass in the ocean requires the use of analytical procedures that destroy the samples. Alternatively, the development of methods to estimate biomass from optical systems and appropriate conversion factors could be a compromise between the accuracy of analytical methods and the need to preserve the samples for further taxonomic studies. The conversion of the body area recorded by an optical counter or a camera, by converting the digitized area of an organism into individual biomass, was suggested as a suitable method to estimate total biomass. In this study, crustacean mesozooplankton from subtropical waters were analyzed, and individual dry weight and body area were compared. The obtained relationships agreed with other measurements of biomass obtained from a previous study in Antarctic waters. Gelatinous mesozooplankton from subtropical and Antarctic waters were also sampled and processed for body area and biomass. As expected, differences between crustacean and gelatinous plankton were highly significant. Transparent gelatinous organisms have a lower dry weight per unit area. Therefore, to estimate biomass from digitized images, pattern recognition discerning, at least, between crustaceans and gelatinous forms is required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] The vertical distribution (0?550 m) of zooplankton biomass, and indices of respiration (electron transfer system [ETS]) and structural growth (aminoacyltRNA synthetases activity [AARS]), were studied in waters off the Antarctic Peninsula during the austral summer of 2000. The dominant species were the copepod Metridia gerlachei and the euphausiid Euphausia superba. We observed a vertical krill/copepod substitution in the water column. The zooplankton biomass in the layer at a depth of 200?500 m was of the same magnitude as the biomass in the layer at a depth of 0?200 m, indicating that biomass in the mesopelagic zone is an important fraction of the total zooplankton in Antarctic waters. The metabolic rates of the zooplankton community were sustained by less than 0.5% of the primary production in the area, suggesting that microplankton or small copepods are the main food source. Neither food availability nor predation seemed to control mesozooplankton biomass. The wide time lag between the abundance peak of the dominant copepod (M. gerlachei) and the phytoplankton bloom is suggested to be the main explanation for the low summer zooplankton biomass observed in these waters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] These experiments test whether respiration can be predicted better from biomass or from potential respiration, a measurement of the mitochondrial and microsomal respiratory electron transport systems. For nearly a century Kleiber's law or a similar precursor have argued the importance of biomass in predicting respiration. In the last decade, a version of the Metabolic Theory of Ecology has elaborated on Kleiber's Law adding emphasis to the importance of biomass in predicting respiration. We argue that Kleiber's law works because biomass packages mitochondria and microsomal electron transport complexes. On a scale of five orders of magnitude we have shown previously that potential respiration predicts respiration aswell as biomass inmarine zooplankton. Here, using cultures of the branchiopod, Artemia salina and on a scale of less than 2 orders of magnitude,we investigated the power of biomass and potential respiration in predicting respiration.We measured biomass, respiration and potential respiration in Artemia grown in different ways and found that potential respiration (Ф) could predict respiration (R), both in μlO2h−1 (R=0.924Φ+0.062, r2=0.976), but biomass (as mg dry mass) could not (R=27.02DM+8.857, r2=0.128). Furthermore the R/Ф ratio appeared independent of age and differences in the food source.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] Marine N2 fixing microorganisms, termed diazotrophs, are a key functional group in marine pelagic ecosystems. The biological fixation of dinitrogen (N2) to bioavailable nitrogen provides an important new source of nitrogen for pelagic marine ecosystems 5 and influences primary productivity and organic matter export to the deep ocean. As one of a series of efforts to collect biomass and rates specific to different phytoplankton functional groups, we have constructed a database on diazotrophic organisms in the global pelagic upper ocean by compiling about 12 000 direct field measurements of cyanobacterial diazotroph abundances (based on microscopic cell counts or qPCR 10 assays targeting the nifH genes) and N2 fixation rates. Biomass conversion factors are estimated based on cell sizes to convert  abundance data to diazotrophic biomass. The database is limited spatially, lacking large regions of the ocean especially in the Indian Ocean. The data are approximately log-normal distributed, and large variances exist in most sub-databases with non-zero values differing 5 to 8 orders of magnitude. 15 Lower mean N2 fixation rate was found in the North Atlantic Ocean than the Pacific Ocean. Reporting the geometric mean and the range of one geometric standard error below and above the geometric mean, the pelagic N2 fixation rate in the global ocean is estimated to be 62 (53–73) TgNyr−1 and the pelagic diazotrophic biomass in the global ocean is estimated to be 4.7 (2.3–9.6) TgC from cell counts and to 89 (40–20 200) TgC from nifH-based abundances. Uncertainties related to biomass conversion factors can change the estimate of geometric mean pelagic diazotrophic biomass in the global ocean by about ±70 %. This evolving database can be used to study spatial and temporal distributions and variations of marine N2 fixation, to validate geochemical estimates and to parameterize and validate biogeochemical models. The database is 25 stored in PANGAEA (http://doi.pangaea.de/10.1594/PANGAEA.774851).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[ES] La influencia de la actividad mesoscalar sobre la biomasa, abundancia y composición taxonómica del mesozooplancton fue estudiada desde las aguas costeras del afloramiento del NW de África a las aguas oceánicas cercanas a las Islas Canarias. Las muestras fueron escaneadas y analizadas mediante un sistema automatizado de procesado de imágenes digitales (ZooImage), demostrando ser una herramienta clave para este tipo de estudios. Nuestros resultados confirman la influencia de las estructuras mesoscalares en la distribución del zooplancton en la zona. El filamento de afloramiento y el remolino anticiclónico estudiados dieron lugar a un aumento de la biomasa y la abundancia del zooplancton en su interior. El acoplamiento físico-biológico existente en las diferentes estructuras se observa mediante la similitud en la distribución de la clorofila, indicador de las condiciones físicas, y la biomasa de zooplancton.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La presentación es la utilizada en la defensa de la memoria de máster

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] Seamounts are considered to be ??hotspots?? of marine life but, their role in oceans primary productivity is still under discussion. We have studied the microbial community structure and biomass of the epipelagic zone (0?150 m) at two northeast Atlantic seamounts (Seine and Sedlo) and compared those with the surrounding ocean. Results from two cruises to Sedlo and three to Seine are presented. Main results show large temporal and spatial microbial community variability on both seamounts. Both Seine and Sedlo heterotrophic community (abundance and biomass) dominate during winter and summer months, representing 75% (Sedlo, July) to 86% (Seine, November) of the total plankton biomass. In Seine, during springtime the contribution to total plankton biomass is similar (47% autotrophic and 53% heterotrophic). Both seamounts present an autotrophic community structure dominated by small cells (nano and picophytoplankton). It is also during spring that a relatively important contribution (26%) of large cells to total autotrophic biomass is found. In some cases, a ??seamount effect?? is observed on Seine and Sedlo microbial community structure and biomass. In Seine this is only observed during spring through enhancement of large autotrophic cells at the summit and seamount stations. In Sedlo, and despite the observed low biomasses, some clear peaks of picoplankton at the summit or at stations within the seamount area are also observed during summer. Our results suggest that the dominance of heterotrophs is presumably related to the trapping effect of organic matter by seamounts. Nevertheless, the complex circulation around both seamounts with the presence of different sources of mesoscale variability (e.g. presence of meddies, intrusion of African upwelling water) may have contributed to the different patterns of distribution, abundances and also changes observed in the microbial community.