8 resultados para Biogenic reefs
em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España
Resumo:
[EN] Global warming is affecting all major ecosystems, including temperate reefs where canopy-forming seaweeds provide biogenic habitat. In contrast to the rapidly growing recognition of how climate affects the performance and distribution of individuals and populations, relatively little is known about possible links between climate and biogenic habitat structure. We examined the relationship between several ocean temperature characteristics, expressed on time-scales of days, months and years, on habitat patch characteristics on 24 subtidal temperate reefs along a latitudinal gradient (Western Australia; ca 34 to 27º S). Significant climate related variation in habitat structure was observed, even though the landscape cover of kelp and fucalean canopies did not change across the climate gradient: monospecific patches of kelp became increasingly dominant in warmer climates, at the expense of mixed kelp-fucalean canopies. The decline in mixed canopies was associated with an increase in the abundance of Sargassum spp., replacing a more diverse canopy assemblage of Scytothalia doryocarpa and several other large fucoids. There were no observed differences in the proportion of open gaps or gap characteristics. These habitat changes were closely related to patterns in minimum temperatures and temperature thresholds (days > 20 °C), presumably because temperate algae require cool periods for successful reproduction and recruitment (even if the adults can survive warmer temperatures). Although the observed habitat variation may appear subtle, similar structural differences have been linked to a range of effects on canopy-associated organisms through the provision of habitat and ecosystem engineering. Consequently, our study suggests that the magnitude of projected temperature increase is likely to cause changes in habitat structure and thereby indirectly affect numerous habitat-dependent plants and animals
Resumo:
[EN] The presence of a mosaic of habitats, largely determined by sea urchin grazing, across shallow rocky reefs may potentially influence in differences in the distribution patterns of invertebrates. The aim of this paper was to assess, using a correlative approach, whether the type of habitat influences the abundance patterns of holothurians in the eastern Atlantic. We hypothesized that abundances of large (> 10 cm) holothurians varied among four types of habitat (3 vegetated habitats with low abundances of the sea urchin D. antillarum versus ?barrens? with hyperabundances of sea urchins), and that these differences were consistent at a hierarchy of spatial scales, including two islands and several replicated sites within each type of habitat and island. Three species of large holothurians were found, accounting for a total of 300 specimens. We found remarkable differences in abundances of holothurians between the ?barrens? and the three vegetated habitats. This pattern was strongest for the numerically dominant species, Holothuria sanctorii. Total abundances of holothurians were between 5 ? 46 times more abundant in ?barrens? compared with the vegetated habitats. Inter-habitat differences were species-specific with some inconsistent patterns from one island to the other. The total abundances of holothurians tended to increase with the abundance of sea urchins within ?barrens?. Our study suggests that there may be a link, at least for the dominant species Holothuria sanctorii, between the distribution and abundances of large holothurians and the habitat across shallow-waters of the eastern Atlantic.
Resumo:
[EN]A range of factors may affect the composition and abundance of macroalgae on subtidal rocky reefs. We experimentally determined the interactive effect of the occurrence of the long-spine sea urchin, Diadema antillarum, depth and sedimentation levels on macroalgal assemblage structure on eastern Atlantic rocky reefs. Specifically, we manipulated sea urchin densities (removal of all individuals vs. untouched controls at natural densities) on rocky reefs devoid of erect vegetation, and predicted (1) that removal of sea urchins would differently affect macroalgal assemblage structure between deep (16-18 m) and shallow (8-9 m) reef strata, and that (2) the effect of sea urchin removal on macroalgae would be altered under different scenarios of sedimentation (ambient vs. enhanced). Experimental circular plots (2 m in diameter) were set up at 3 locations at Gran Canaria (Canarian Archipelago), and were maintained and monitored every 4 wk for 1 y. At the end of the experimental period, the structure of the algal assemblages differed between urchin treatments and depth strata, with a larger cover of turf and bushlike algae where urchins were removed and at the shallow reef stratum. More important, differences in algal assemblage structure between urchin treatments were irrespective of sedimentation levels, but shifted from the shallow to the deep stratum. This interactive effect was, in turn, observed for bushlike algae, as a result of a larger magnitude of response (i.e., larger cover) in the shallow stratum relative to the deep stratum, but was not detected for either turf or crustose coralline algae. These results highlight the importance of sorne physical conditions (here, differences in depth) to interact with biotic processes (here, urchin abundance) to create patterns in the organization of subtidal and benthic assemblages
Resumo:
[EN] Habitats dominated by algal canopies are often altered by physical disturbances of varying severity, changing environmental conditions and biological processes. We used Artificial Seaweed Units (ASUs) to test whether severity of physical disturbances on algal canopies affects the post-disturbance colonization of gastropods on subtidal reefs. Specifically, we examined patterns of assemblage structure of gastropods to test the hypothesis that the extent and intensity of canopy removal affects the post-disturbance colonization of ASUs, testing the consistency of these effects among four regions encompassing a 68 latitudinal gradient in southwestern Australia. Because adjacent habitats can act as a source of new colonists (either as drifting migrants or as a source of propagules) from the perimeter surrounding perturbed areas, we also predicted that patterns of colonization (types and total abundances of colonizers) were influenced by the available pool of individuals at the scale of reefs. Three reefs were selected within each region. On each reef, ASUs were placed in the centre of circular canopy clearings of different size (0, 3, 13 and 50 m2) and intensity (50% vs 100%), and retrieved after 3 months. Resulting assemblages occupying the ASUs were quantitatively representative of the adjacent (undisturbed), algal-associated, assemblages at the scale of reef. Within reefs, recruited assemblages largely mimicked those associated with erect red algae. However, neither disturbance size nor intensity affected the colonization patterns across reefs and regions. These results suggest that algal-associated gastropods, regardless of the prevalent mode of dispersion, are resilient to physical disturbances to canopies across broad geographical regions as long as the pool of potential colonists is maintained. A high dispersal ability of gastropods likely ensures a quick colonization of recovering algal habitats.
Resumo:
[EN] We examined whether the abundance and size of the starfish Marthasterias glacialis (Lamk.) exhibit a depth-dependent partitioning on subtidal reefs. We tested the hypothesis that differences in food availability can result in habitat partitioning along a depth gradient. The abundance and size of M. glacialis was registered at 4 depth strata: 0-4 m, 4-8 m, 8-12 m, and >12 m; we also recorded the number of food items that they were preying on. The abundance and size of M. glacialis decreased with depth. Mussels (Mytilus galloprivincialis) were the most preyed food item across all depth strata, followed by gastropods, sea urchins and barnacles; M. glacialis also consumed a significantly larger amount of mussels in feeding experiments compared with sea urchins and gastropods. The abundance of M. galloprivincialis beds decreased with depth. The clear link between the decrease in abundance and size of M. glacialis with depth and the decay of the most consumed prey (mussels) suggest that food availability may play an important role in the vertical distribution of this starfish, though wave-associated turbulence in the first few metres of the subtidal could also limit the abundance of M. glacialis.