5 resultados para Bacteriology of Antarctic paleosols
em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España
Resumo:
Máster en Oceanografía
Resumo:
[EN] An optimum multiparameter analysis was applied to a data set for the eastern boundary of the North Atlantic subtropical gyre, gathered during November of two consecutive years and spanning from 16 to 36º N. This data set covers over 20º of latitude with good meridional and zonal resolution over the whole coastal transition zone. The contribution from six water types in the depth range between 100 and 2000 m is solved. In the 100 to 700 m depth range the central waters of southern and northern origin meet abruptly at the Cape Verde Frontal Zone. This front traditionally has been reported to stretch from Cape Blanc, at about 21.5º N, to the Cape Verde Islands, but in our case it penetrates as far as 24º N over the continental slope. South of 21º N latitude we actually find a less saline and more oxygenated variety of South Atlantic Central Water, which we ascribe to less diluted equatorial waters. In the 700 to 1500 m depth range the dominant water type is a diluted form of Antarctic Intermediate Water (AAIW), whose influence smoothly disappears north of the Canary Islands as it is replaced by Mediterranean Water (MW); at latitudes where both water masses coexist, we observe MW offshore while AAIW is found near-shore. North Atlantic Deep Water is the dominating water type below about 1300/1700 m depth south/north of the Canary Islands; this abrupt change in depth suggests the existence of different paths for the deep waters reaching both sides of the archipelago.
Resumo:
Máster en Oceanografía
Resumo:
[EN] In order to establish the potential role of Antarctic krill (Euphausia superba) in the recycling of bioactive elements, we have quantified the release of iron, phosphate, and ammonia by these organisms along the Antarctic Peninsula sector of the Southern Ocean. The experimental results suggested that the presence of krill has a significant impact on ambient iron concentrations, as large amounts of this trace element were released by the krill (22–689 nmol Fe g Dry Weight−1 h−1, equivalent to 0.2 to 4.3 nmol Fe L−1 d−1). Half of this iron release occurred within the first hour of the experiment, and differences in iron and phosphate release rates (3.1 to 14.0 μmol PO43− g DW−1 h−1) seemed to reflect differences in food availability. These results identify krill as a major node in iron cycling in the Southern Ocean, potentially influencing iron residence time in the upper water column of this region.