6 resultados para Automatic speech recognition (ASR)
em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España
Resumo:
<p>[EN]Perceptual User Interfaces (PUIs) aim at facilitating human-computer interaction with the aid of human-like capacities (computer vision, speech recognition, etc.). In PUIs, the human face is a central element, since it conveys not only identity but also other important information, particularly with respect to the users mood or emotional state. This paper describes both a face detector and a smile detector for PUIs. Both are suitable for real-time interaction.</p>
Resumo:
<p>Automatic face recognition has been mainly tackled by matching a new image to a set of previously computed identity models. The literature describes approximations where those identity models are based on a single sample or a set of them. However, face representation keeps being a topic of great debate in the psychology literature, with some results suggesting the use of an average image. In this paper, instead of restricting our system to a fixed and precomputed classifier, the system learns iteratively based on the experience extracted from each meeting.</p>
Resumo:
<p>[EN]During the last decade, researchers have verified that clothing can provide information for gender recognition. However, before extracting features, it is necessary to segment the clothing region. We introduce a new clothes segmentation method based on the application of the GrabCut technique over a trixel mesh, obtaining very promising results for a close to real time system. Finally, the clothing features are combined with facial and head context information to outperform previous results in gender recognition with a public database.</p>
Resumo:
<p>[EN]Different researches suggest that inner facial features are not the only discriminative features for tasks such as person identification or gender classification. Indeed, they have shown an influence of features which are part of the local face context, such as hair, on these tasks. However, object-centered approaches which ignore local context dominate the research in computational vision based facial analysis. In this paper, we performed an analysis to study which areas and which resolutions are diagnostic for the gender classification problem. We first demonstrate the importance of contextual features in human observers for gender classification using a psychophysical bubbles technique.</p>
Resumo:
<p>[EN]In this paper a system for face recognition from a tabula rasa (i.e. blank slate) perspective is described. A priori, the system has the only ability to detect automatically faces and represent them in a space of reduced dimension. Later, the system is exposed to over 400 different identities, observing its recognition performance evolution. The preliminary results achieved indicate on the one side that the system is able to reject most of unknown individuals after an initialization stage.</p>