7 resultados para Animal genetic resources
em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España
Resumo:
[EN] The hawksbill sea turtle (Eretmochelys imbricata) is a circumglobal tropical species listed as Critically Endangered by the IUCN. While it is known that at least one stock occurs around the rookeries of São Tome and Principe and Bioko Islands, the eastern Atlantic remains genetically unexplored. We present the first analysis of mitochondrial DNA (mtDNA) sequences (n = 28) of hawksbill juveniles in a foraging aggregation at the Cape Verde Islands, an archipelago located in the eastern Atlantic. The mean size (minimun curve carapace length) of the studied individuals was 42.45 cm.
Resumo:
[EN] For many species, there is broad-scale dispersal of juvenile stages and/or long-distance migration of individuals and hence the processes that drive these various wide-ranging move- ments have important life-history consequences. Sea turtles are one of these paradigmatic long-distance travellers, with hatchlings thought to be dispersed by ocean currents and adults often shuttling between distant breeding and foraging grounds. Here, we use multi- disciplinary oceanographic, atmospheric and genetic mixed stock analyses to show that juvenile turtles are encountered ‘downstream’ at sites predicted by currents. However, in some cases, unusual occurrences of juveniles are more readily explained by storm events and we show that juvenile turtles may be displaced thousands of kilometres from their expected dispersal based on prevailing ocean currents.
Resumo:
[EN] For many species, there is broad-scale dispersal of juvenile stages and/or long-distance migration of individuals and hence the processes that drive these various wide-ranging move- ments have important life-history consequences. Sea turtles are one of these paradigmatic long-distance travellers, with hatchlings thought to be dispersed by ocean currents and adults often shuttling between distant breeding and foraging grounds. Here, we use multi- disciplinary oceanographic, atmospheric and genetic mixed stock analyses to show that juvenile turtles are encountered ‘downstream’ at sites predicted by currents. However, in some cases, unusual occurrences of juveniles are more readily explained by storm events and we show that juvenile turtles may be displaced thousands of kilometres from their expected dispersal based on prevailing ocean currents.
Resumo:
[EN] Aim: A key life-history component for many animals is the need for movement between different geographical locations at particular times. Green turtle (Chelonia mydas) hatchlings disperse from their natal location to spend an early pelagic stage in the ocean, followed by a neritic stage where small juveniles settle in coastal areas. In this study, we combined genetic and Lagrangian drifter data to investigate the connectivity between natal and foraging locations. In particular, we focus on the evidence for transatlantic transport.
Resumo:
[EN] Despite the considerable population genetic and connectivity research on the hawksbill sea turtle (Eretmochelys imbricata) and the species being critically endangered, the eastern Atlantic remains understudied. We present the first analysis of mitochondrial DNA (mtDNA) sequences (n = 28) of hawksbill juveniles in a foraging aggregation at the Cape Verde Islands. Our results showed three haplotypes non-reported in any nesting population to date, with one of them accounting for 68% of the samples. These three haplotypes were closely related to each other but highly divergent from all known Caribbean and Western Atlantic haplotypes.
Resumo:
[EN] Green turtle hatchlings disperse away from their natal location to spend an early pelagic stage in the ocean, followed by a neritic stage where small juveniles settle in coastal areas. Here, we combined genetic and Lagrangian drifter data to investigate the connectivity between natal and foraging locations; particularly focussing on the evidence for transatlantic transport. Our results supported the general hypothesis that turtles tend to select foraging areas ‘closest-to-home’.