2 resultados para Anaerobic metabolism
em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España
Resumo:
[EN] It was investigated whether skeletal muscle K(+) release is linked to the degree of anaerobic energy production. Six subjects performed an incremental bicycle exercise test in normoxic and hypoxic conditions prior to and after 2 and 8 wk of acclimatization to 4,100 m. The highest workload completed by all subjects in all trials was 260 W. With acute hypoxic exposure prior to acclimatization, venous plasma [K(+)] was lower (P < 0.05) in normoxia (4.9 +/- 0.1 mM) than hypoxia (5.2 +/- 0.2 mM) at 260 W, but similar at exhaustion, which occurred at 400 +/- 9 W and 307 +/- 7 W (P < 0.05), respectively. At the same absolute exercise intensity, leg net K(+) release was unaffected by hypoxic exposure independent of acclimatization. After 8 wk of acclimatization, no difference existed in venous plasma [K(+)] between the normoxic and hypoxic trial, either at submaximal intensities or at exhaustion (360 +/- 14 W vs. 313 +/- 8 W; P < 0.05). At the same absolute exercise intensity, leg net K(+) release was less (P < 0.001) than prior to acclimatization and reached negative values in both hypoxic and normoxic conditions after acclimatization. Moreover, the reduction in plasma volume during exercise relative to rest was less (P < 0.01) in normoxic than hypoxic conditions, irrespective of the degree of acclimatization (at 260 W prior to acclimatization: -4.9 +/- 0.8% in normoxia and -10.0 +/- 0.4% in hypoxia). It is concluded that leg net K(+) release is unrelated to anaerobic energy production and that acclimatization reduces leg net K(+) release during exercise.
Anaerobic energy provision does not limit Wingate exercise performance in endurance-trained cyclists
Resumo:
[EN] The aim of this study was to evaluate the effects of severe acute hypoxia on exercise performance and metabolism during 30-s Wingate tests. Five endurance- (E) and five sprint- (S) trained track cyclists from the Spanish National Team performed 30-s Wingate tests in normoxia and hypoxia (inspired O(2) fraction = 0.10). Oxygen deficit was estimated from submaximal cycling economy tests by use of a nonlinear model. E cyclists showed higher maximal O(2) uptake than S (72 +/- 1 and 62 +/- 2 ml x kg(-1) x min(-1), P < 0.05). S cyclists achieved higher peak and mean power output, and 33% larger oxygen deficit than E (P < 0.05). During the Wingate test in normoxia, S relied more on anaerobic energy sources than E (P < 0.05); however, S showed a larger fatigue index in both conditions (P < 0.05). Compared with normoxia, hypoxia lowered O(2) uptake by 16% in E and S (P < 0.05). Peak power output, fatigue index, and exercise femoral vein blood lactate concentration were not altered by hypoxia in any group. Endurance cyclists, unlike S, maintained their mean power output in hypoxia by increasing their anaerobic energy production, as shown by 7% greater oxygen deficit and 11% higher postexercise lactate concentration. In conclusion, performance during 30-s Wingate tests in severe acute hypoxia is maintained or barely reduced owing to the enhancement of the anaerobic energy release. The effect of severe acute hypoxia on supramaximal exercise performance depends on training background.