2 resultados para Alternatives to incarceration
em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España
Resumo:
[EN] Today, science is difficult to pursue because funding is so tenuous. In such a financial climate, researchers need to consider parallel alternatives to ensure that scientific research can continue. Based on this thinking, we created BIOCEANSolutions, a company born of a research group. A great variety of environmental regulations and standards have emerged over recent years with the purpose of protecting natural ecosystems. These have enabled us to link our research to the market of environmental management. Marine activities can alter environmental conditions, resulting in changes in physiological states, species diversity, abundance, and biomass in the local biological communities. In this way, we can apply our knowledge, to plankton ecophysiology and biochemical oceanography. We measure enzyme activities as bio-indicators of energy metabolism and other physiological rates and biologic-oceanographic processes in marine organisms. This information provides insight into the health of marine communities, the stress levels of individual organisms, and potential anomalies that may be affecting them. In the process of verifying standards and complying with regulations, we can apply our analytic capability and knowledge. The main analyses that we offer are: (1) the activity of the electron transport system (ETS) or potential respiration (Φ), (2) the physiological measurement of respiration (oxygen consumption), (3) the activity of Isocitrate dehydrogenase (IDH), (4) the respiratory CO2 production, and (5) the activity of Glutamate dehydrogenase (GDH) and (6) the physiological measurement of ammonium excretion. In addition, our experience in a productive research group allows us to pursue and develop technical-experimental activities such as marine and freshwater aquaculture, oceanographic field sampling, as well as providing guidance, counseling, and academic services. In summary, this new company will permit us to create a symbiosis between public and private sectors that serve clients and will allow us to grow and expand as a research team.
Resumo:
[EN] We analyze the discontinuity preserving problem in TV-L1 optical flow methods. This type of methods typically creates rounded effects at flow boundaries, which usually do not coincide with object contours. A simple strategy to overcome this problem consists in inhibiting the diffusion at high image gradients. In this work, we first introduce a general framework for TV regularizers in optical flow and relate it with some standard approaches. Our survey takes into account several methods that use decreasing functions for mitigating the diffusion at image contours. Consequently, this kind of strategies may produce instabilities in the estimation of the optical flows. Hence, we study the problem of instabilities and show that it actually arises from an ill-posed formulation. From this study, it is possible to come across with different schemes to solve this problem. One of these consists in separating the pure TV process from the mitigating strategy. This has been used in another work and we demonstrate here that it has a good performance. Furthermore, we propose two alternatives to avoid the instability problems: (i) we study a fully automatic approach that solves the problem based on the information of the whole image; (ii) we derive a semi-automatic approach that takes into account the image gradients in a close neighborhood adapting the parameter in each position. In the experimental results, we present a detailed study and comparison between the different alternatives. These methods provide very good results, especially for sequences with a few dominant gradients. Additionally, a surprising effect of these approaches is that they can cope with occlusions. This can be easily achieved by using strong regularizations and high penalizations at image contours.