2 resultados para Agricultural and Biosystems Engineering
em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España
Resumo:
[EN]A new algorithm for evaluating the top event probability of large fault trees (FTs) is presented. This algorithm does not require any previous qualitative analysis of the FT. Indeed, its efficiency is independent of the FT logic, and it only depends on the number n of basic system components and on their failure probabilities. Our method provides exact lower and upper bounds on the top event probability by using new properties of the intrinsic order relation between binary strings. The intrinsic order enables one to select binary n-tuples with large occurrence probabilities without necessity to evaluate them. This drastically reduces the complexity of the problem from exponential (2n binary n-tuples) to linear (n Boolean variables)...
Resumo:
[EN] This paper proposes the incorporation of engineering knowledge through both (a) advanced state-of-the-art preference handling decision-making tools integrated in multiobjective evolutionary algorithms and (b) engineering knowledge-based variance reduction simulation as enhancing tools for the robust optimum design of structural frames taking uncertainties into consideration in the design variables.The simultaneous minimization of the constrained weight (adding structuralweight and average distribution of constraint violations) on the one hand and the standard deviation of the distribution of constraint violation on the other are handled with multiobjective optimization-based evolutionary computation in two different multiobjective algorithms. The optimum design values of the deterministic structural problem in question are proposed as a reference point (the aspiration level) in reference-point-based evolutionary multiobjective algorithms (here g-dominance is used). Results including