6 resultados para 3D information
em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España
Resumo:
[EN]This paper describes a wildfi re forecasting application based on a 3D virtual environment and a fi re simulation engine. A novel open source framework is presented for the development of 3D graphics applications over large geographic areas, off ering high performance 3D visualization and powerful interaction tools for the Geographic Information Systems (GIS) community. The application includes a remote module that allows simultaneous connection of several users for monitoring a real wildfi re event.
Resumo:
[EN] This paper describes a wildfire forecasting application based on a 3D virtual environment and a fire simulation engine. A new open source framework is presented for the development of 3D graphics applications over large geographic areas offering high performance 3D visualization and powerful interaction tools for the Geographic Information Systems community. The application includes a remote module that allows simultaneous connection of several users for monitoring a real wildfire event. The user is enabled to simulate and visualize a wildfire spreading on the terrain under conditions of spatial information on topography and fuels along with weather and wind files.
Resumo:
[EN] This abstract describes the development of a wildfire forecasting plugin using Capaware. Capaware is designed as an easy to use open source framework to develop 3D graphics applications over large geographic areas offering high performance 3D visualization and powerful interaction tools for the Geographic Information Systems (GIS) community.
Resumo:
[EN] In this paper we present a method for the regularization of 3D cylindrical surfaces. By a cylindrical surface we mean a 3D surface that can be expressed as an application S(l; µ) ! R3 , where (l; µ) represents a cylindrical parametrization of the 3D surface. We built an initial cylindrical parametrization of the surface. We propose a new method to regularize such cylindrical surface. This method takes into account the information supplied by the disparity maps computed between pair of images to constraint the regularization of the set of 3D points. We propose a model based on an energy which is composed of two terms: an attachment term that minimizes the difference between the image coordinates and the disparity maps and a second term that enables a regularization by means of anisotropic diffusion. One interesting advantage of this approach is that we regularize the 3D surface by using a bi-dimensional minimization problem.
Resumo:
[EN] In the last years we have developed some methods for 3D reconstruction. First we began with the problem of reconstructing a 3D scene from a stereoscopic pair of images. We developed some methods based on energy functionals which produce dense disparity maps by preserving discontinuities from image boundaries. Then we passed to the problem of reconstructing a 3D scene from multiple views (more than 2). The method for multiple view reconstruction relies on the method for stereoscopic reconstruction. For every pair of consecutive images we estimate a disparity map and then we apply a robust method that searches for good correspondences through the sequence of images. Recently we have proposed several methods for 3D surface regularization. This is a postprocessing step necessary for smoothing the final surface, which could be afected by noise or mismatch correspondences. These regularization methods are interesting because they use the information from the reconstructing process and not only from the 3D surface. We have tackled all these problems from an energy minimization approach. We investigate the associated Euler-Lagrange equation of the energy functional, and we approach the solution of the underlying partial differential equation (PDE) using a gradient descent method.
Resumo:
[EN] In this paper we present a method for the regularization of a set of unstructured 3D points obtained from a sequence of stereo images. This method takes into account the information supplied by the disparity maps computed between pairs of images to constraint the regularization of the set of 3D points. We propose a model based on an energy which is composed of two terms: an attachment term that minimizes the distance from 3D points to the projective lines of camera points, and a second term that allows for the regularization of the set of 3D points by preserving discontinuities presented on the disparity maps. We embed this energy in a 2D finite element method. After minimizing, this method results in a large system of equations that can be optimized for fast computations. We derive an efficient implicit numerical scheme which reduces the number of calculations and memory allocations.