2 resultados para 1114
em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España
Filtro por publicador
- Rhode Island School of Design (1)
- Aberystwyth University Repository - Reino Unido (1)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (2)
- Aquatic Commons (9)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (1)
- Aston University Research Archive (2)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (12)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (17)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- Cámara de Comercio de Bogotá, Colombia (1)
- Cambridge University Engineering Department Publications Database (5)
- CentAUR: Central Archive University of Reading - UK (13)
- Chapman University Digital Commons - CA - USA (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (29)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Claremont University Consortium, United States (1)
- Cochin University of Science & Technology (CUSAT), India (1)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (5)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (2)
- Digital Commons - Montana Tech (2)
- Digital Commons @ Winthrop University (2)
- Digital Commons at Florida International University (6)
- Digital Howard @ Howard University | Howard University Research (1)
- Digital Peer Publishing (1)
- Digital Repository at Iowa State University (1)
- DigitalCommons - The University of Maine Research (2)
- DigitalCommons@The Texas Medical Center (4)
- DigitalCommons@University of Nebraska - Lincoln (7)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (7)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (8)
- Greenwich Academic Literature Archive - UK (1)
- Harvard University (1)
- Helda - Digital Repository of University of Helsinki (1)
- Indian Institute of Science - Bangalore - Índia (7)
- Livre Saber - Repositório Digital de Materiais Didáticos - SEaD-UFSCar (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Memoria Académica - FaHCE, UNLP - Argentina (6)
- Ministerio de Cultura, Spain (6)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Portal de Revistas Científicas Complutenses - Espanha (2)
- Publishing Network for Geoscientific & Environmental Data (93)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (14)
- Queensland University of Technology - ePrints Archive (19)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Santarém - Portugal (1)
- Repositorio de la Universidad de Cuenca (1)
- Repositorio de la Universidad del Pacífico - PERU (1)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (24)
- RIBERDIS - Repositorio IBERoamericano sobre DIScapacidad - Centro Español de Documentación sobre Discapacidad (CEDD) (1)
- Royal College of Art Research Repository - Uninet Kingdom (2)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- School of Medicine, Washington University, United States (1)
- Universidad del Rosario, Colombia (13)
- Universidad Politécnica de Madrid (1)
- Universidade Complutense de Madrid (2)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universidade Metodista de São Paulo (1)
- Universitat de Girona, Spain (1)
- Université de Montréal, Canada (3)
- University of Connecticut - USA (4)
- University of Michigan (6)
- University of Queensland eSpace - Australia (20)
- University of Southampton, United Kingdom (1)
Resumo:
[EN] We present in this paper a variational approach to accurately estimate simultaneously the velocity field and its derivatives directly from PIV image sequences. Our method differs from other techniques that have been presented in the literature in the fact that the energy minimization used to estimate the particles motion depends on a second order Taylor development of the flow. In this way, we are not only able to compute the motion vector field, but we also obtain an accurate estimation of their derivatives. Hence, we avoid the use of numerical schemes to compute the derivatives from the estimated flow that usually yield to numerical amplification of the inherent uncertainty on the estimated flow. The performance of our approach is illustrated with the estimation of the motion vector field and the vorticity on both synthetic and real PIV datasets.