4 resultados para 11-BETA-HYDROXYSTEROID DEHYDROGENASE-ACTIVITY
em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España
Resumo:
[EN]Starvation at all scales of plankton from archaea to medusae is the prevailing condition in marine ecosystems. Such nutrient-limitation will shift the physiological state in these organisms with accompanying changes in their physiology and biochemistry. Here, we review our laboratory’s progress in documenting these changes associated with starvation in a range of marine organisms. Specifically, we focused on respiration, ammonium excretion, CO2 production, RQ, respiratory ETS activity, isocitrate dehydrogenase and glutamate dehydrogenase activity in the mysid, Leptomysis lingvura, a dinoflagellate, Oxyrrhis marina and two bacteria, Vibrio natriegens, and Pseudomonas nautica
Resumo:
[EN] Ammonium (NH4+) release by bacterial remineralization and heterotrophic grazers determines the regenerated fraction of phytoplankton productivity, so the measurement of NH4+ excretion in marine organisms is necessary to characterize both the magnitude and the efficiency of the nitrogen cycle. Glutamate dehydrogenase (GDH) is largely responsible for NH4+ formation in crustaceans and consequently should be useful in estimating NH4+ excretion by marine zooplankton.
Here, we address body size and starvation as sources of variability on the GDH to NH4+ excretion ratio (GDH/RNH4+). We found a strong correlation between the RNH4+ and the GDH activity (r2 = 0.87, n = 41) during growth. Since GDH activity maintained a linear relation (b = 0.93) and RNH4+ scaled exponentially (b =0.55) in well fed mysids, the GDH/RNH4+ ratio increased with size. However, the magnitude of its variation increased even more when adult mysids were starved. In this case, the GDH/RNH4+ ratio ranged from 11.23 to 102.41.
Resumo:
Máster Universitario en Oceanografía