107 resultados para INTELIGENCIA ARTIFICIAL
Resumo:
[EN]Perceptual User Interfaces (PUIs) aim at facilitating human-computer interaction with the aid of human-like capacities (computer vision, speech recognition, etc.). In PUIs, the human face is a central element, since it conveys not only identity but also other important information, particularly with respect to the user’s mood or emotional state. This paper describes both a face detector and a smile detector for PUIs. Both are suitable for real-time interaction.
Resumo:
[EN]This paper focuses on four different initialization methods for determining the initial shape for the AAM algorithm and their particular performance in two different classification tasks with respect to either the facial expression DaFEx database and to the real world data obtained from a robot’s point of view.
Resumo:
[EN]The widespread availability of portable computing power and inexpensive digital cameras is opening up new possibilities for retailers. One example is in optical shops, where a number of systems exist that facilitate eyeglasses selection. These systems are now more necessary as the market is saturated with an increasingly complex array of lenses, frames, coatings, tints, photochromic and polarizing treatments, etc. Research challenges encompass Computer Vision, Multimedia and Human-Computer Interaction. Cost factors are also of importance for widespread product acceptance. This paper describes a low-cost system that allows the user to visualize di erent spectacle models in live video. The user can also move the spectacles to adjust its position on the face. Experiments show the potential of the system.
Resumo:
[EN]Different researches suggest that inner facial features are not the only discriminative features for tasks such as person identification or gender classification. Indeed, they have shown an influence of features which are part of the local face context, such as hair, on these tasks. However, object-centered approaches which ignore local context dominate the research in computational vision based facial analysis. In this paper, we performed an analysis to study which areas and which resolutions are diagnostic for the gender classification problem. We first demonstrate the importance of contextual features in human observers for gender classification using a psychophysical ”bubbles” technique.
Resumo:
Automatic face recognition has been mainly tackled by matching a new image to a set of previously computed identity models. The literature describes approximations where those identity models are based on a single sample or a set of them. However, face representation keeps being a topic of great debate in the psychology literature, with some results suggesting the use of an average image. In this paper, instead of restricting our system to a fixed and precomputed classifier, the system learns iteratively based on the experience extracted from each meeting.
Resumo:
[ES]This paper describes some simple but useful computer vision techniques for human-robot interaction. First, an omnidirectional camera setting is described that can detect people in the surroundings of the robot, giving their angular positions and a rough estimate of the distance. The device can be easily built with inexpensive components. Second, we comment on a color-based face detection technique that can alleviate skin-color false positives. Third, a simple head nod and shake detector is described, suitable for detecting affirmative/negative, approval/dissaproval, understanding/disbelief head gestures.
Resumo:
[EN]This work presents a comparison among different focus measures used in the literature for autofocusing in a non previously explored application of face detection. This application has different characteristics to those where traditionally autofocus methods have been applied like microscopy or depth from focus. The aim of the work is to find if the best focus measures in traditional applications of autofocus have the same performance in face detection applications. To do that six focus measures has been studied in four different settings from the oldest to more recent ones.
Resumo:
[EN]This paper does not propose a new technique for face representationorclassification. Insteadtheworkdescribed here investigates the evolution of an automatic system which, based on a currently common framework, and starting from an empty memory, modifies its classifiers according to experience. In the experiments we reproduce up to a certain extent the process of successive meetings. The results achieved, even when the number of different individuals is still reduced compared to off-line classifiers, are promising.
Resumo:
[EN]In this paper a system for face recognition from a tabula rasa (i.e. blank slate) perspective is described. A priori, the system has the only ability to detect automatically faces and represent them in a space of reduced dimension. Later, the system is exposed to over 400 different identities, observing its recognition performance evolution. The preliminary results achieved indicate on the one side that the system is able to reject most of unknown individuals after an initialization stage.
Resumo:
Programa de doctorado: Cibernética y Telecomunicación
Resumo:
[EN]We investigate mechanisms which can endow the computer with the ability of describing a human face by means of computer vision techniques. This is a necessary requirement in order to develop HCI approaches which make the user feel himself/herself perceived. This paper describes our experiences considering gender, race and the presence of moustache and glasses. This is accomplished comparing, on a set of 6000 facial images, two di erent face representation approaches: Principal Components Analysis (PCA) and Gabor lters. The results achieved using a Support Vector Machine (SVM) based classi er are promising and particularly better for the second representation approach.
Resumo:
[EN]Automatic detection systems do not perform as well as human observers, even on simple detection tasks. A potential solution to this problem is training vision systems on appropriate regions of interests (ROIs), in contrast to training on predefined and arbitrarily selected regions. Here we focus on detecting pedestrians in static scenes. Our aim is to answer the following question: Can automatic vision systems for pedestrian detection be improved by training them on perceptually-defined ROIs?
Resumo:
[ES]Se propone en este trabajo la utilización de habilidades de detección de personas basadas en Visión por Ordenador para su integración en instalaciones artísticas de vídeo, explorando someramente sus capacidades, y mostrando una propuesta preliminar.
Resumo:
[ES]This paper describes an analysis performed for facial description in static images and video streams. The still image context is first analyzed in order to decide the optimal classifier configuration for each problem: gender recognition, race classification, and glasses and moustache presence. These results are later applied to significant samples which are automatically extracted in real-time from video streams achieving promising results in the facial description of 70 individuals by means of gender, race and the presence of glasses and moustache.
Resumo:
[EN]This paper describes in detail a real-time multiple face detection system for video streams. The system adds to the good performance provided by a window shift approach, the combination of different cues available in video streams due to temporal coherence. The results achieved by this combined solution outperform the basic face detector obtaining a 98% success rate for around 27000 images, providing additionally eye detection and a relation between the successive detections in time by means of detection threads.