57 resultados para Ecuaciones integrales
Resumo:
[EN]The effectiveness and accuracy of the superposition method in assessing the dynamic stiffness and damping functions of embedded footings supported by vertical piles in homogeneous viscoelastic soil is addressed. To the end, the impedances of piled embedded footings are compared to those obtained by suporposing the impedance functions of the corresponding pile groups and embedded footing treated separately.
Resumo:
[EN]Different phenomena such a soil consolidation, erosion, and scour beneath an embedded footing supported on piles may lead to loss of contact between soil and the pile cap underside. The importance of this separation on the dynamic stiffness and damping of the foundation is assessed in this work.
Resumo:
[EN]A boundary element-finite element model is presented for the three-dimensional dynamic analysis of piled buildings in the frequency domain. Piles are modelled as compressible Euler-Bernoulli beams founded on a linear, isotropic, viscoelastic, zoned-homogeneous, unbounded layered soil, while multi-storey buildings are assumed to be comprised of vertical compressible piers and rigid slabs.
Resumo:
[EN]The influence of inclined piles on the dynamic response of deep foundations and superstructures is still not well understood and needs further research. For this reason, impedance functions of deep foundations with inclined piles, obtained numerically from a boundary element-finete element coupling model, are provided in this paper.
Resumo:
[EN]When analysing the seismic response of pile groups, a vertically-incident wavefiel is usually employed even though it doesnot necessarily correspond to the worst case scenario. This work aims to study the influence of both type of seismic body wave and its angle of incidence on the dynamic response of pile foundations.
Resumo:
[EN]This work presents a time-harmonic boundary elementfinite element three-dimensional model for the dynamic analysis of building structures founded on elastic or porelastic soils. The building foundation and soil domains are modelled as homogeneous, isotropic, elastic or poroelastic media using boundary elements.
Resumo:
[EN]This paper addresses the seismic analysis of a deeply embedded non-slender structure hosting the pumping unit of a reservoir. The dynamic response in this type of problems is usually studied under the assumption of a perfectly rigid structure using a sub-structuring procedure (three-step solution) proposed specifically for this hypothesis.
Resumo:
[EN]In this work, stiffness and damping functions of pile foundations with inclined end-bearing piles have been computed for square 2X2 and 3X3 pile groups embedded in a soft stratum overlaying a rigid bedrock. The paper algo invetigates the influence that the assumption of a perfectly rigid bedrock and fixed boundary conditions at the pile tips have on the impedance functions.
Updating incomplete factorization preconditioners for shifted linear systems arising in a wind model
Resumo:
[EN]We present a new method to construct a trivariate T-spline representation of complex solids for the application of isogeometric analysis. We take a genus-zero solid as a basis of our study, but at the end of the work we explain the way to generalize the results to any genus solids. The proposed technique only demands a surface triangulation of the solid as input data. The key of this method lies in obtaining a volumetric parameterization between the solid and the parametric domain, the unitary cube. To do that, an adaptive tetrahedral mesh of the parametric domain is isomorphically transformed onto the solid by applying a mesh untangling and smoothing procedure...
Resumo:
[EN]In previous works, many authors have widely used mass consistent models for wind field simulation by the finite element method. On one hand, we have developed a 3-D mass consistent model by using tetrahedral meshes which are simultaneously adapted to complex orography and to terrain roughness length. In addition, we have included a local refinement strategy around several measurement or control points, significant contours, as for example shorelines, or numerical solution singularities. On the other hand, we have developed a 2.5-D model for simulating the wind velocity in a 3-D domain in terms of the terrain elevation, the surface temperature and the meteorological wind, which is consider as an averaged wind on vertical boundaries...
Resumo:
[EN]The meccano method is a novel and promising mesh generation method for simultaneously creating adaptive tetrahedral meshes and volume parametrizations of a complex solid. We highlight the fact that the method requires minimum user intervention and has a low computational cost. The method builds a 3-D triangulation of the solid as a deformation of an appropriate tetrahedral mesh of the meccano. The new mesh generator combines an automatic parametrization of surface triangulations, a local refinement algorithm for 3-D nested triangulations and a simultaneous untangling and smoothing procedure. At present, the procedure is fully automatic for a genus-zero solid. In this case, the meccano can be a single cube. The efficiency of the proposed technique is shown with several applications...
Resumo:
[EN]In this paper we propose a finite element method approach for modelling the air quality in a local scale over complex terrain. The area of interest is up to tens of kilometres and it includes pollutant sources. The proposed methodology involves the generation of an adaptive tetrahedral mesh, the computation of an ambient wind field, the inclusion of the plume rise effect in the wind field, and the simulation of transport and reaction of pollutants. We apply our methodology to simulate a fictitious pollution episode in La Palma island (Canary Island, Spain)...
Resumo:
[EN]We present a new method to construct a trivariate T-spline representation of complex genuszero solids for the application of isogeometric analysis. The proposed technique only demands a surface triangulation of the solid as input data. The key of this method lies in obtaining a volumetric parameterization between the solid and the parametric domain, the unitary cube. To do that, an adaptive tetrahedral mesh of the parametric domain is isomorphically transformed onto the solid by applying a mesh untangling and smoothing procedure. The control points of the trivariate T-spline are calculated by imposing the interpolation conditions on points sited both on the inner and on the surface of the solid...
Resumo:
[EN] This paper aims to contribute to clarify whether the use of battered piles has a positive or negative influence on the dynamic response of deep foundations and superstructures. For this purpose, the dynamic response of slender and non-slender structures supported on several configurations of 2X2 and 3X3 pile groups including battered elements is obtained through a procedure based on a substructuring model whick takes soil-structure interaction into account.