61 resultados para 1206
Resumo:
[EN]The application of the Isogeometric Analysis (IA) with T-splines [1] demands a partition of the parametric space, C, in a tiling containing T-junctions denominated T-mesh. The T-splines are used both for the geometric modelization of the physical domain, D, and the basis of the numerical approximation. They have the advantage over the NURBS of allowing local refinement. In this work we propose a procedure to construct T-spline representations of complex domains in order to be applied to the resolution of elliptic PDE with IA. In precedent works [2, 3] we accomplished this task by using a tetrahedral parametrization…
Resumo:
Congresos y conferencias
Resumo:
Congresos y conferencias
Resumo:
Congresos y conferencias
Resumo:
[EN]En este trabajo presentamos un procedimiento para la modelización de sólidos con geometríacompleja mediante una estructura octree [1]. Partiendo de una triangulación superficial del sólido, se construye una malla de hexaedros que aproxima la geometría con una precisión indicada. Para ello se emplea una división recursiva del espacio con una estructura octree. Inicialmente se lleva a cabo una traslación y escalado de la triangulación al cubo inicial [0,1]3 donde se construye el octree...
Resumo:
[EN]In this paper, we extend a simultaneous untangling and smoothing technique previously developed for triangular and tetrahedral meshes to quadrilateral and hexahedral ones. Specifically, we present a technique that iteratively untangles and smooths a given quadrilateral or hexahedral mesh by minimizing an objective function defined in terms of a modification of an algebraic quality measure. The proposed method optimizes the mesh quality by a local node relocation process. That is, without modifying the mesh connectivity. Finally, we present several examples to show that the proposed technique obtains valid meshes composed by high-quality quadrilaterals and hexahedra, even when we start from tangled meshes…
Resumo:
[EN]In this paper we introduce a new methodology for wind field forecasting over complex terrain. The idea is to use the predictions of the HARMONIE mesoscale model as the input data for an adaptive finite element mass consistent wind model [1, 2]. A description of the HARMONIE Non-Hydrostatic Dynamics can be found in [3]. The HARMONIE results (obtained with a maximum resolution about 1 Km) are refined in a local scale (about a few meters)...
Resumo:
[EN]We present advances of the meccano method for T-spline modelling and analysis of complex geometries. We consider a planar domain composed by several irregular sub-domains. These sub-regions are defined by their boundaries and can represent different materials. The bivariate T-spline representation of the whole physical domain is constructed from a square. In this procedure, a T-mesh optimization method is crucial. We show results of an elliptic problem by using a quadtree local T-mesh refinement technique…
Resumo:
[EN]We present a new strategy, based on the meccano method [1, 2, 3], to construct a T-spline parameterization of 2D geometries for the application of isogeometric analysis. The proposed method only demands a boundary representation of the geometry as input data. The algorithm obtains, as a result, high quality parametric transformation between 2D objects and the parametric domain, the unit square. The key of the method lies in defining an isomorphic transformation between the parametric and physical T-mesh finding the optimal position of the interior nodes by applying a new T-mesh untangling and smoothing procedure. Bivariate T-spline representation is calculated by imposing the interpolation conditions on points sited both on the interior and on the boundary of the geometry…
Resumo:
[EN]We present advances of the meccano method [1,2] for tetrahedral mesh generation and volumetric parameterization of solids. The method combines several former procedures: a mapping from the meccano boundary to the solid surface, a 3-D local refinement algorithm and a simultaneous mesh untangling and smoothing. The key of the method lies in defining a one-to-one volumetric transformation between the parametric and physical domains. Results with adaptive finite elements will be shown for several engineering problems. In addition, the application of the method to T-spline modelling and isogeometric analysis [3,4] of complex geometries will be introduced…
Resumo:
[EN]In this talk we introduce a new methodology for wind field simulation or forecasting over complex terrain. The idea is to use wind measurements or predictions of the HARMONIE mesoscale model as the input data for an adaptive finite element mass consistent wind model [1,2]. The method has been recently implemented in the freely-available Wind3D code [3]. A description of the HARMONIE Non-Hydrostatic Dynamics can be found in [4]. The results of HARMONIE (obtained with a maximum resolution about 1 Km) are refined by the finite element model in a local scale (about a few meters). An interface between both models is implemented such that the initial wind field approximation is obtained by a suitable interpolation of the HARMONIE results…
Resumo:
[EN]Ensemble forecasting [1] is a methodology to deal with uncertainties in the numerical wind prediction. In this work we propose to apply ensemble methods to the adaptive wind forecasting model presented in [2]. The wind _eld forecasting is based on a mass-consistent model and a log-linear wind pro_le using as input data the resulting forecast wind from Harmonie [3], a Non-Hydrostatic Dynamic model. The mass-consistent model parameters are estimated by using genetic algorithms [4]. The mesh is generated using the meccano method [5] and adapted to the geometry. The main source of uncertainties in this model is the parameter estimation and the in- trinsic uncertainties of the Harmonie Model…
Resumo:
[EN]We have recently introduced a new strategy, based on the meccano method [1, 2], to construct a T-spline parameterization of 2D and 3D geometries for the application of iso geometric analysis [3, 4]. The proposed method only demands a boundary representation of the geometry as input data. The algorithm obtains, as a result, high quality parametric transformation between the objects and the parametric domain, i.e. the meccano. The key of the method lies in de_ning an isomorphic transformation between the parametric and physical T-mesh _nding the optimal position of the interior nodes, once the meccano boundary nodes are mapped to the boundary of the physical domain…