20 resultados para náuplios de Artemia
Resumo:
[EN] This seminar will report the latest activities of the ULPGC»s Plankton Ecophysiology group (PEG). This group studies respiration, growth, nitrogen metabolism, oceanic carbon flux, deep ocean metabolism, and plankton cultivation. It works with zooplankton, phytoplankton, bacteria, and macroalgae. The premise behind the group»s investigations is that enzyme biochemistry controls an organism»s physiology that, in turn, has a strong impact on ocean chemistry and ecology. This research team (PEG) uses as foils, the metabolic theory of ecology (MTE) and Kleiber»s law to argue the fact that respiratory metabolism is controlled not by biomass, but by the respiratory electron transport system (R-ETS). It has pointed out that the reason, zooplankton respiration statistically correlates with biomass, is because biomass packages mitochondria and mitochondria package the R-ETS. It has demonstrated, experimentally with Artemia salina, the superiority of using ETS as a respiration proxy rather than using biomass. Working with bacteria it has shown the inadequacy of the MTE in describing respiration in different growth phases of bacteria and has shown that a rival model based on enzyme kinetics works much better.
Resumo:
[EN] Being fish larvae visual feeders, vision plays an important role in larval orientation at first feeding (Blaxter, 1986). Larval trophic behaviour is closely related with the development of the visual capacity, which directly depends on retina organogenesis. In sparids, such as Pagrus major (Kawamura, 1984) and Pagrus auratus (Pankhurst, 1996), the most important changes in the eye structure occur along the lecitotrophic stage as a preparation for prey capture. Neuringer et al.,(1988) has established a critical role for n-3 polyunsaturated fatty acids and, particularly docosahexaenoic acid (DHA) in neural and retinal tissue functions in mammals. Similarly, in larval fish there is a high demand of DHA to form nervous membranes. Bell and Dick (1993) found photoreceptors in the eye, rods and cones accumulate and selectively retain DHA in external segments.Bell et al. (1995) found that feeding juvenile herring a DHA poor Artemia diet during the period of rod development resulted in impaired vision at low light intensities, when rod vision is essential.
Resumo:
[EN] Since paralarval rearing is still the main bottleneck for the development of octopus culture, the aim of the present study was to obtain some information on the feeding strategy and nutritional requirements during paralarval stage. For that purpose just hatched out octopus paralarvae were fed with live preys in three different combinations, trying to match their natural food: Enriched Artemia metanauplii, Grapsus grapsus zoeas supplemented with enriched Artemia, and Plagusia depressa zoeas supplemented with enriched Artemia. Paralarval treatments were carried out during 28 days in triplicates; fibre glass 120 l tanks in flow through system were used. Growth, in terms of dry body weight, mantle length and width, was determined each seven days. A histological study of the paralarval development was carried out. Biochemical composition of preys and paralarvae were determined. Growth was significantly better in paralarvae fed with zoeas and Artemia than in those fed only with Artemia, from day 8 after hatching. Besides a clear effect on the digestive gland histology morphology was observed.
Resumo:
[ES] Main deformities such as lordosis, opercular deformities and upper/lower jaws shortening are considered as quality descriptors in commercial marine fish fry production and seem to be related with larval culture conditions in early larval stages. The aim of this work was to obtain information about the contribution of the diet and rearing system to the apparition of these abnormalities in gilthead sea bream (Sparus aurata) larvae in semi-industrial scale facilities. For that purpose, two different larval rearing systems semi-intensive and intensive were compared; besides, two different rotifer enrichments, DHA Protein Selco, (Inve Aquaculture, Dendermonde, Belgium) (R1) and Red Pepper Paste, (Bernaqua bvba, Turnhout, Belgium) were tested in the intensive system. Biochemical composition of larvae, preys and commercial products was analysed. At 50 days post hatching six hundred fish per treatment were individually studied under stereoscope and deformity frequency recorded. Besides at 95 days post hatching fry were soft X ray monitored. Both rotifer enrichment and rearing system affected survival, growth and deformity frequency. Rearing system did not affect total larvae fatty acid content except at 20 dah, where DHA were significantly higher and EPA significantly lower in Semi-intensive system. A significantly lower percentage of deformity rates together with better survival and growth were obtained in the semi-intensive system. In dietary treatment, rotifer enrichment significantly affected larval survival. R1 rotifers enrichment significantly (P<0.05) improved survival when compared to fed R2 larvae. The content of DPA was significantly (P<0.05) higher in R2 fed larvae reflecting the R2 rotifers content of this fatty acid. The level of this FA tended to decrease in concordance with the rotifers replacement by artemia in the diet. The effects n-3-HUFA and DPA (22:5n-6) over larval survival and skeletal deformities development is discussed.
Resumo:
[EN] Paralarval rearing constitutes the main bottleneck to the complete development of octopus culture. This paper try to optimise the larval rearing conditions of Octopus Paralarvae, testing the effect of light intensity (1000, 3000 and 6000 lux ) over growth and paralarval survival. Four fibber glass tanks, 100 litter capacity with an initial density of 20 ind./litter were used for each treatment. All light treatments were fed with the same protocol, just hatching Maja Squinado Zoeas and Artemia metanaulios (72 hours)enriched with a commercial emulsion (Red Pepper Paste, Bernaqua, bva; Belgium). Better growth and survival were found with the highest light intensity treatment.