60 resultados para Ocean fronts
Resumo:
Programa de doctorado en Oceanografía. Trabajo presentado para la obtención del Diploma de Estudios Avanzados.
Resumo:
Sinking particles through the pelagic ocean have been traditionally considered the most important vehicle by which the biological pump sequesters carbon in the ocean interior. Nevertheless, regional scale variability in particle flux is a major outstanding issue in oceanography. 5 Here, we have studied the regional and temporal variability of total particulate organic matter fluxes, as well as chloropigment and total hydrolyzed amino acid (THAA) compositions and fluxes in the Canary Current region, between 20–30 N, during two contrasting periods: August 2006, characterized by warm and stratified waters, but also intense winds which enhanced eddy development south of the Canary Islands, 10 and February 2007, characterized by colder waters, less stratification and higher productivity. We found that the eddy-field generated south of the Canary Islands enhanced by >2 times particulate organic carbon (POC) export with respect to stations (FF; farfield) outside the eddy-field influence. We also observed flux increases of one order of magnitude in chloropigment and 70% in THAA in the eddy-field relative to FF stations. 15 Principal Components Analysis (PCA) was performed to assess changes in particulate organic matter composition between stations. At eddy-field stations, higher chlorophyll enrichment reflected “fresher” material, while at FF stations a higher proportion of pheophytin indicated greater degradation due to microbes and microzooplankton. PCA also suggests that phytoplankton community structure, particularly the dominance of 20 diatoms versus carbonate-rich plankton, is the major factor influencing the POC export within the eddy field. In February, POC export fluxes were the highest ever reported for this area, reaching values of 15 mmolCm−2 d−1 at 200m depth. Compositional changes in pigments and THAA indicate that the source of sinking particles varies zonally and meridionally and suggest that sinking particles were more degraded at 25 near-coastal stations relative to open ocean stations.
Resumo:
Se han eliminado las páginas en blanco
Resumo:
Máster en Oceanografía
Resumo:
[EN] Diel Vertical Migrants (DVMs) are mainly zooplankton and micronekton which migrate upward from 400-500 m depth every night to feed on the productive epipelagic zone, coming back at dawn to the mesopelagic zone, where they defecate, excrete, and respire the ingested carbon. DVMs should contribute to the biological pump in the ocean and, accordingly, to the global CO2 balance. Although those migrants are mainly small fishes, cephalopods and crustaceans, the lanternfishes (myctophidae) usually contribute up to 80% of total DVMs biomass. Thus, myctophids may represent a pathway accounting for a substantial export of organic carbon to the deep ocean. However, the magnitude of this transport is still poorly known. In order to assess this active flux of carbon, we performed a preliminary study of mesopelagic organisms around the Canary Islands. Here we present the results of diet, daily rations and feeding chronology of Lobianchia dofleini, Hygophum hygomii and Ceratoscopelus maderensis, 3 dominant species of myctophids performing diel vertical migrations in the Subtropical Eastern North Atlantic Ocean. Samples were obtained on board the RV La Bocaina during June 2009. Myctophids were sorted and fixed in 4% buffered formalin and the stomach contents of target species were examined and weighted. Feeding chronology was approached by studying stomach fullness and state of digestion of prey items in individuals from hauls performed at different times and depths. Our results provide further information about lanternfishes feeding ecology in relation to their vertical migration patterns as well as their contribution to the biological carbon pump.
Resumo:
[EN] On 8-10 April 2007, several episodes of intense sea-breeze fronts were registered at the island of Fuerteventura (Canary Islands). The sea-breeze circulation was primary driven by daytime heating contrasts between land and the Atlantic Ocean during a period of weak trade winds. Numerical simulations of these events were carried out using the 3.1.1 version of the Weather Research and Forecasting (WRF) Model. Two different domains with 6.6-km and 2.2-km horizontal grid spacing and two sets with 27 and 51 vertical sigma levels were defined. The simulation was performed using two-way interactive nesting between the first and the second domain, using different land surface model parameterizations (Thermal diffusion, Noah LSM and RUC) for comparison. Initial conditions were provided by the NCAR Dataset analysis from April 2007, which were improved using surface and upper-air observations. The poster is focused on the 9 April episode.
Resumo:
[EN] On 8-10 April 2007, several episodes of intense sea-breeze fronts were registered at the islands of Fuerteventura and Lanzarote (Canary Islands). The sea-breeze circulation was primary driven by daytime heating contrasts between land and the Atlantic Ocean during a period of weak trade winds. Numerical simulations of these events were carried out using the 3.1.1 version of the Weather Research and Forecasting (WRF-ARW) Model. Three different domains with 6.6-km, 2.2-km and 0.7-km horizontal grid spacing and two sets with 51 and 70 vertical sigma levels were defined. The simulation was performed using two-way interactive nesting between the first and the second domain, using different land surface model parameterizations (Thermal diffusion, Noah LSM and RUC) for comparison. Initial conditions were provided by the NCAR Dataset analysis from April 2007, which were improved using surface and upper-air observations. The poster is focused on the 10 April episode.
Resumo:
[EN]Labile Fe(II) distributions were investigated in the Sub-Tropical South Atlantic and the Southern Ocean during the BONUS-GoodHope cruise from 34 to 57_ S (February? March 2008). Concentrations ranged from below the detection limit (0.009 nM) to values as high 5 as 0.125 nM. In the surface mixed layer, labile Fe(II) concentrations were always higher than the detection limit, with values higher than 0.060nM south of 47_ S, representing between 39% and 63% of dissolved Fe (DFe). Biological production was evidenced. At intermediate depth, local maxima were observed, with the highest values in the Sub-Tropical domain at around 200 m, and represented more than 70% of DFe. Remineralization processes were likely responsible for those sub-surface maxima. Below 1500 m, concentrations were close to or below the detection limit, except at two stations (at the vicinity of the Agulhas ridge and in the north of the Weddell Sea Gyre) where values remained as high as _0.030?0.050 nM. Hydrothermal or sediment inputs may provide Fe(II) to these deep waters. Fe(II) half life times (t1/2) at 4 _C were measured in the upper and deep waters and ranged from 2.9 to 11.3min, and from 10.0 to 72.3 min, respectively. Measured values compared quite well in the upper waters with theoretical values from two published models, but not in the deep waters. This may be due to the lack of knowledge for some parameters in the models and/or to organic complexation of Fe(II) that impact its oxidation rates. This study helped to considerably increase the Fe(II) data set in the Ocean and to better understand the Fe redox cycle.
Mesoscale eddies: Hotspots of prokaryotic activity and differential community structure in the ocean
Resumo:
[EN] To investigate the effects of mesoscale eddies on prokaryotic assemblage structure and activity, we sampled two cyclonic eddies (CEs) and two anticyclonic eddies (AEs) in the permanent eddy-field downstream the Canary Islands. The eddy stations were compared with two far-field (FF) stations located also in the Canary Current, but outside the influence of the eddy field. The distribution of prokaryotic abundance (PA), bulk prokaryotic heterotrophic activity (PHA), various indicators of single-cell activity (such as nucleic acid content, proportion of live cells, and fraction of cells actively incorporating leucine), as well as bacterial and archaeal community structure were determined from the surface to 2000m depth. In the upper epipelagic layer (0?200 m), the effect of eddies on the prokaryotic community was more apparent, as indicated by the higher PA, PHA, fraction of living cells, and percentage of active cells incorporating leucine within eddies than at FF stations. Prokaryotic community composition differed also between eddy and FF stations in the epipelagic layer. In the mesopelagic layer (200?1000 m), there were also significant differences in PA and PHA between eddy and FF stations, although in general, there were no clear differences in community composition or single-cell activity. The effects on prokaryotic activity and community structure were stronger in AE than CE, decreasing with depth in both types of eddies. Overall, both types of eddies show distinct community compositions (as compared with FF in the epipelagic), and represent oceanic ?hotspots? of prokaryotic activity (in the epi- and mesopelagic realms).
Resumo:
[EN] Sinking particles through the pelagic ocean have been traditionally considered the most important vehicle by which the biological pump sequesters carbon in the ocean interior. Nevertheless, regional scale variability in particle flux is a major outstanding issue in oceanography. Here, we have studied the regional and temporal variability of total particulate organic matter fluxes, as well as chloropigment and total hydrolyzed amino acid (THAA) compositions and fluxes in the Canary Current region, between 20?30_ N, during two contrasting periods: August 2006, characterized by warm and stratified waters, but also intense winds which enhanced eddy development south of the Canary Islands, and February 2007, characterized by colder waters, less stratification and higher productivity. We found that the eddyfield generated south of the Canary Islands enhanced by >2 times particulate organic carbon (POC) export with respect to stations (FF; far-field) outside the eddy-field influence. We also observed flux increases of one order of magnitude in chloropigment and 2 times in THAA in the eddy-field relative to FF stations. Principal Components Analysis (PCA) was performed to assess changes in particulate organic matter composition between stations. At eddy-field stations, higher chlorophyll enrichment reflected ?fresher? material, while at FF stations a higher proportion of pheophytin indicated greater degradation due to microbes and microzooplankton. PCA also suggests that phytoplankton community structure, particularly the dominance of diatoms versus carbonate-rich plankton, is the major factor influencing the POC export within the eddy field. In February, POC export POC export within the eddy field. In February, POC export fluxes were the highest ever reported for this area, reaching values of _15 mmolCm?2 d?1 at 200m depth. Compositional changes in pigments and THAA indicate that the source of sinking particles varies zonally and meridionally and suggest that sinking particles were more degraded at near-coastal stations relative to open ocean stations.