32 resultados para León, Luis de, 1527-1591
Resumo:
[EN] In this work, we present a new model for a dense disparity estimation and the 3-D geometry reconstruction using a color image stereo pair. First, we present a brief introduction to the 3-D Geometry of a camera system. Next, we propose a new model for the disparity estimation based on an energy functional. We look for the local minima of the energy using the associate Euler-Langrage partial differential equations. This model is a generalization to color image of the model developed in, with some changes in the strategy to avoid the irrelevant local minima. We present some numerical experiences of 3-D reconstruction, using this method some real stereo pairs.
Resumo:
[EN] We present an energy based approach to estimate a dense disparity map from a set of two weakly calibrated stereoscopic images while preserving its discontinuities resulting from image boundaries. We first derive a simplified expression for the disparity that allows us to estimate it from a stereo pair of images using an energy minimization approach. We assume that the epipolar geometry is known, and we include this information in the energy model. Discontinuities are preserved by means of a regularization term based on the Nagel-Enkelmann operator. We investigate the associated Euler-Lagrange equation of the energy functional, and we approach the solution of the underlying partial differential equation (PDE) using a gradient descent method The resulting parabolic problem has a unique solution. In order to reduce the risk to be trapped within some irrelevant local minima during the iterations, we use a focusing strategy based on a linear scalespace. Experimental results on both synthetic and real images arere presented to illustrate the capabilities of this PDE and scale-space based method.
Resumo:
[EN] In this paper we present some real problems which appear in computer vision which yields to nonlinear system of algebraic equations. We study the problem of camera calibration. Roughly speaking camera calibration consists in looking at the camera position in the 3- D world using as information the projection of a 3- D Scene in a 2-D plane (the photogram). The problem is quite different when we use a single view or several views (stereo vision) of the 3-D scene. We will show in this paper how these problems yields to nonlinear algebraic system of equations.
Resumo:
[EN] This paper presents an interpretation of a classic optical flow method by Nagel and Enkelmann as a tensor-driven anisotropic diffusion approach in digital image analysis. We introduce an improvement into the model formulation, and we establish well-posedness results for the resulting system of parabolic partial differential equations. Our method avoids linearizations in the optical flow constraint, and it can recover displacement fields which are far beyond the typical one-pixel limits that are characteristic for many differential methods for optical flow recovery. A robust numerical scheme is presented in detail. We avoid convergence to irrelevant local minima by embedding our method into a linear scale-space framework and using a focusing strategy from coarse to fine scales. The high accuracy of the proposed method is demonstrated by means of a synthetic and a real-world image sequence.
Resumo:
[EN] In this paper, we present a vascular tree model made with synthetic materials and which allows us to obtain images to make a 3D reconstruction.We have used PVC tubes of several diameters and lengths that will let us evaluate the accuracy of our 3D reconstruction. In order to calibrate the camera we have used a corner detector. Also we have used Optical Flow techniques to follow the points through the images going and going back. We describe two general techniques to extract a sequence of corresponding points from multiple views of an object. The resulting sequence of points will be used later to reconstruct a set of 3D points representing the object surfaces on the scene. We have made the 3D reconstruction choosing by chance a couple of images and we have calculated the projection error. After several repetitions, we have found the best 3D location for the point.
Resumo:
[EN] In this paper we present a method for the regularization of 3D cylindrical surfaces. By a cylindrical surface we mean a 3D surface that can be expressed as an application S(l; µ) ! R3 , where (l; µ) represents a cylindrical parametrization of the 3D surface. We built an initial cylindrical parametrization of the surface. We propose a new method to regularize such cylindrical surface. This method takes into account the information supplied by the disparity maps computed between pair of images to constraint the regularization of the set of 3D points. We propose a model based on an energy which is composed of two terms: an attachment term that minimizes the difference between the image coordinates and the disparity maps and a second term that enables a regularization by means of anisotropic diffusion. One interesting advantage of this approach is that we regularize the 3D surface by using a bi-dimensional minimization problem.
Resumo:
[EN] In this paper, we present a vascular tree model made with synthetic materials and which allows us to obtain images to make a 3D reconstruction. In order to create this model, we have used PVC tubes of several diameters and lengths that will let us evaluate the accuracy of our 3D reconstruction. We have made the 3D reconstruction from a series of images that we have from our model and after we have calibrated the camera. In order to calibrate it we have used a corner detector. Also we have used Optical Flow techniques to follow the points through the images going and going back. Once we have the set of images where we have located a point, we have made the 3D reconstruction choosing by chance a couple of images and we have calculated the projection error. After several repetitions, we have found the best 3D location for the point.
Resumo:
[EN] In the last years we have developed some methods for 3D reconstruction. First we began with the problem of reconstructing a 3D scene from a stereoscopic pair of images. We developed some methods based on energy functionals which produce dense disparity maps by preserving discontinuities from image boundaries. Then we passed to the problem of reconstructing a 3D scene from multiple views (more than 2). The method for multiple view reconstruction relies on the method for stereoscopic reconstruction. For every pair of consecutive images we estimate a disparity map and then we apply a robust method that searches for good correspondences through the sequence of images. Recently we have proposed several methods for 3D surface regularization. This is a postprocessing step necessary for smoothing the final surface, which could be afected by noise or mismatch correspondences. These regularization methods are interesting because they use the information from the reconstructing process and not only from the 3D surface. We have tackled all these problems from an energy minimization approach. We investigate the associated Euler-Lagrange equation of the energy functional, and we approach the solution of the underlying partial differential equation (PDE) using a gradient descent method.
Resumo:
[EN] In this paper we present a new model for optical flow calculation using a variational formulation which preserves discontinuities of the flow much better than classical methods. We study the Euler-Lagrange equations asociated to the variational problem. In the case of quadratic energy, we show the existence and uniqueness of the corresponding evolution problem. Since our method avoid linearization in the optical flow constraint, it can recover large displacement in the scene. We avoid convergence to irrelevant local minima by embedding our method into a linear scale-space framework and using a focusing strategy from coarse to fine scales.
Resumo:
[EN] Presentamos un método no lineal para la estimación de la geometría 3-D de una escena a partir de imágenes esteroscópicas. El problema principal consiste en calcular la posición relativa de las 2 cámaras a partir de un número de puntos que se corresponden en ambas cámaras. La posición relativa de las 2 cámaras viene dada por un vector de 7 parámetros : -X=(s,l,m,n,tx,ty,tz)-. Para calcular estos parámetros hay que minimizar una energía no-lineal del tipo E(x)=kAqxj donde A es una matriz 9x9 y q(X) es un vector función de X. En este trabajo presentamos un algoritmo para la busqueda de mínimos locales de E(X) basado en una modifcación del método de gradiente de paso óptimo. Presentamos algunas experiencias comparativas con otros métodos clásicos.
Resumo:
[EN] In this paper we present a method for the regularization of a set of unstructured 3D points obtained from a sequence of stereo images. This method takes into account the information supplied by the disparity maps computed between pairs of images to constraint the regularization of the set of 3D points. We propose a model based on an energy which is composed of two terms: an attachment term that minimizes the distance from 3D points to the projective lines of camera points, and a second term that allows for the regularization of the set of 3D points by preserving discontinuities presented on the disparity maps. We embed this energy in a 2D finite element method. After minimizing, this method results in a large system of equations that can be optimized for fast computations. We derive an efficient implicit numerical scheme which reduces the number of calculations and memory allocations.
Resumo:
[ES] En este trabajo proponemos un nuevo modelo para el cálculo de la disparidad y la reconstrucción 3-D a partir de un sistema estéreo compuesto por 2 imágenes en color. Proponemos un nuevo modelo para el cálculo de la disparidad basado en un criterio de energía. Para calcular los mínimos de este funcional de energía utilizamos la ecuación en derivadas parciales de Euler-Langrage asociada. Este modelo es una extensión a imágenes color del modelo desarrollado en "L. Alvarez, R. Deriche, J. Sánchez and J. Weickert, Dense disparity map estimation respecting image discontinuities : A PDE and Scale-Space Based Approach. INRIA Rapport de Recherche Nº 3874, 2000". Con algunos cambios en la estrategia parav evitar caer en mínimos locales de la energía. Por último presentamos algunas experiencias numéricas de la reconstrucción 3-D obtenida con este método en algunos pares estéreos de imágenes reales.