2 resultados para three phase
em Academic Archive On-line (Stockholm University
Resumo:
Self-assembly of nanoparticles is a promising route to form complex, nanostructured materials with functional properties. Nanoparticle assemblies characterized by a crystallographic alignment of the nanoparticles on the atomic scale, i.e. mesocrystals, are commonly found in nature with outstanding functional and mechanical properties. This thesis aims to investigate and understand the formation mechanisms of mesocrystals formed by self-assembling iron oxide nanocubes. We have used the thermal decomposition method to synthesize monodisperse, oleate-capped iron oxide nanocubes with average edge lengths between 7 nm and 12 nm and studied the evaporation-induced self-assembly in dilute toluene-based nanocube dispersions. The influence of packing constraints on the alignment of the nanocubes in nanofluidic containers has been investigated with small and wide angle X-ray scattering (SAXS and WAXS, respectively). We found that the nanocubes preferentially orient one of their {100} faces with the confining channel wall and display mesocrystalline alignment irrespective of the channel widths. We manipulated the solvent evaporation rate of drop-cast dispersions on fluorosilane-functionalized silica substrates in a custom-designed cell. The growth stages of the assembly process were investigated using light microscopy and quartz crystal microbalance with dissipation monitoring (QCM-D). We found that particle transport phenomena, e.g. the coffee ring effect and Marangoni flow, result in complex-shaped arrays near the three-phase contact line of a drying colloidal drop when the nitrogen flow rate is high. Diffusion-driven nanoparticle assembly into large mesocrystals with a well-defined morphology dominates at much lower nitrogen flow rates. Analysis of the time-resolved video microscopy data was used to quantify the mesocrystal growth and establish a particle diffusion-based, three-dimensional growth model. The dissipation obtained from the QCM-D signal reached its maximum value when the microscopy-observed lateral growth of the mesocrystals ceased, which we address to the fluid-like behavior of the mesocrystals and their weak binding to the substrate. Analysis of electron microscopy images and diffraction patterns showed that the formed arrays display significant nanoparticle ordering, regardless of the distinctive formation process. We followed the two-stage formation mechanism of mesocrystals in levitating colloidal drops with real-time SAXS. Modelling of the SAXS data with the square-well potential together with calculations of van der Waals interactions suggests that the nanocubes initially form disordered clusters, which quickly transform into an ordered phase.
Resumo:
Industrial and domestic sewage effluents have been found to cause reproductive disorders in wild fish, often as a result of the interference of compounds in the effluents with the endocrine system. This thesis describes laboratory-based exposure experiments and a field survey that were conducted with juveniles of the three-spined stickleback, Gasterosteus aculeatus. This small teleost is a common fish in Swedish coastal waters and was chosen as an alternative to non-native test species commonly used in endocrine disruption studies, which allows the comparison of field data with results from laboratory experiments. The aim of this thesis was to elucidate 1) if genetic sex determination and differentiation can be disturbed by natural and synthetic steroid hormones and 2) whether this provides an endpoint for the detection of endocrine disruption, 3) to evaluate the applicability of specific estrogen- and androgen-inducible marker proteins in juvenile three-spined sticklebacks, 4) to investigate whether estrogenic and/or androgenic endocrine disrupting activity can be detected in effluents from Swedish pulp mills and domestic sewage treatment plants and 5) whether such activity can be detected in coastal waters receiving these effluents. Laboratory exposure experiments found juvenile three-spined sticklebacks to be sensitive to water-borne estrogenic and androgenic steroid substances. Intersex – the co-occurrence of ovarian and testicular tissue in gonads – was induced by 17β-estradiol (E2), 17α-ethinylestradiol (EE2), 17α-methyltestosterone (MT) and 5α-dihydrotestosterone (DHT). The first two weeks after hatching was the phase of highest sensitivity. MT was ambivalent by simultaneously eliciting masculinizing and feminizing effects. When applying a DNA-based method for genetic sex identification, it was found that application of MT only during the first two weeks after hatching caused total and apparently irreversible development of testis in genetic females. E2 caused gonad type reversal from male to female. E2 and EE2 induced vitellogenin - the estrogen-responsive yolk precursor protein, while DHT and MT induced spiggin – the androgen-responsive glue protein of the stickleback. None of the effluents from two pulp mills and two domestic sewage treatment plants had any estrogenic or androgenic activity. Juvenile three-spined sticklebacks were collected during four subsequent summers at the Swedish Baltic Sea coast in recipients of effluents from pulp mills and a domestic sewage treatment plant as well as remote reference sites. No sings of endocrine disruption were observed at any site, when studying gonad development or marker proteins, except for a deviation of sex ratios at a reference site. The three-spined stickleback – with focus on the juvenile stage – was found to be a sensitive species suitable for the study of estrogenic and androgenic endocrine disruption.