3 resultados para text structure

em Academic Archive On-line (Stockholm University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two types of mesoscale wind-speed jet and their effects on boundary-layer structure were studied. The first is a coastal jet off the northern California coast, and the second is a katabatic jet over Vatnajökull, Iceland. Coastal regions are highly populated, and studies of coastal meteorology are of general interest for environmental protection, fishing industry, and for air and sea transportation. Not so many people live in direct contact with glaciers but properties of katabatic flows are important for understanding glacier response to climatic changes. Hence, the two jets can potentially influence a vast number of people. Flow response to terrain forcing, transient behavior in time and space, and adherence to simplified theoretical models were examined. The turbulence structure in these stably stratified boundary layers was also investigated. Numerical modeling is the main tool in this thesis; observations are used primarily to ensure a realistic model behavior. Simple shallow-water theory provides a useful framework for analyzing high-velocity flows along mountainous coastlines, but for an unexpected reason. Waves are trapped in the inversion by the curvature of the wind-speed profile, rather than by an infinite stability in the inversion separating two neutral layers, as assumed in the theory. In the absence of blocking terrain, observations of steady-state supercritical flows are not likely, due to the diurnal variation of flow criticality. In many simplified models, non-local processes are neglected. In the flows studied here, we showed that this is not always a valid approximation. Discrepancies between simulated katabatic flow and that predicted by an analytical model are hypothesized to be due to non-local effects, such as surface inhomogeneity and slope geometry, neglected in the theory. On a different scale, a reason for variations in the shape of local similarity scaling functions between studies is suggested to be differences in non-local contributions to the velocity variance budgets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbohydrates are a complex group of biomolecules with a high structural diversity. Their almost omnipresent occurrence has generated a broad field of research in both biology and chemistry. This thesis focuses on three different aspects of carbohydrate chemistry, synthesis, structure elucidation and the conformational analysis of carbohydrates. The first paper describes the synthesis of a penta- and a tetrasaccharide related to the highly branched capsular polysaccharide from Streptococcus pneumoniae type 37. In the second paper, the structure of the O-antigenic repeating unit from the lipopolysaccharide of E. coli 396/C1 was determined along with indications of the structure of the biological repeating unit. In addition, its structural and immunological relationship with E. coli O126 is discussed. In the third paper, partially protected galactopyranosides were examined to clarify the origin of an intriguing 4JHO,H coupling, where a W-mediated coupling pathway was found to operate. In the fourth paper, the conformation of methyl a-cellobioside is studied with a combination of molecular dynamics simulations and NMR spectroscopy. In addition to the expected syn-conformation, detection and quantification of anti-ø and anti-ψ conformers was also possible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ordinary yet unique, water is the substance on which life is based. Water seems, at first sight, to be a very simple molecule, consisting of two hydrogen atoms attached to one oxygen. Its small size belies the complexity of its action and its numerous anomalies, central to a broad class of important phenomena, ranging from global current circulation, terrestrial water and CO2 cycles to corrosion and wetting. The explanation of this complex behavior comes from water's unique ability to form extensive three-dimensional networks of hydrogen-bonds, whose nature and structures, in spite of a great deal of efforts involving a plethora of experimental and theoretical techniques, still lacks a complete scientific understanding. This thesis is devoted to the study of the local structure of hydrogen-bonded liquids, with a particular emphasis on water, taking advantage of a combination of core-level spectroscopies and density functional theory spectra calculations. X-ray absorption, in particular, is found to be sensitive to the local hydrogen-bond environment, thus offering a very promising tool for spectroscopic identification of specific structural configurations in water, alcohols and aqueous solutions. More specifically, the characteristic spectroscopic signature of the broken hydrogen-bond at the hydrogen side is used to analyze the structure of bulk water, leading to the finding that most molecules are arranged in two hydrogen-bond configurations, in contrast to the picture provided by molecular dynamics simulations. At the liquid-vapor interface, an interplay of surface sensitive measurements and theoretical calculations enables us to distinguish a new interfacial species in equilibrium with the gas. In a similar approach the cluster form of the excess proton in highly concentrated acid solutions and the different coordination of methanol at the vacuum interface and in the bulk can also be clearly identified. Finally the ability of core-level spectroscopies, aided by sophisticated density functional theory calculations, to directly probe the valence electronic structure of a system is used to observe the nature of the interaction between water molecules and solvated ions in solution. Water around transition metal ions is found to interact with the solute via orbital mixing with the metal d-orbitals. The hydrogen-bond between water molecules is explained in terms of electrostatic interactions enhanced by charge rehybridization in which charge transfer between connecting molecules is shown to be fundamental.