2 resultados para problems in the real line
em Academic Archive On-line (Stockholm University
Resumo:
As an anomaly on the market of military shooters of the 21st century, Spec Ops: The Line entails a journey of undetermined realities and modern warfare consequences. In this study, the narrative is analyzed from the perspective of Jean Baudrillard’s idea that simulations have replaced our conception of reality. Both the protagonist and the player of Spec Ops will unavoidably descend into a state of the hyperreal. They experience multiple possible realities within the game narrative and end up unable to comprehend what has transpired. The hyperreal is defined as the state in which it is impossible to discern reality from simulation. The simulation of reality has proliferated itself into being the reality, and the original has been lost. The excessive use of violence, direct approach of the player through a break with the 4th wall and a deceitful narrator contribute to this loss of reality within the game. Although the game represents simulacra, being a simulation in itself, the object of study is the coexisting state of hyperreal shared between protagonist and player when comprehending events in the game. In the end, neither part can understand or discern with any certainty what transpired within the game.
Resumo:
A faithful depiction of the tropical atmosphere requires three-dimensional sets of observations. Despite the increasing amount of observations presently available, these will hardly ever encompass the entire atmosphere and, in addition, observations have errors. Additional (background) information will always be required to complete the picture. Valuable added information comes from the physical laws governing the flow, usually mediated via a numerical weather prediction (NWP) model. These models are, however, never going to be error-free, why a reliable estimate of their errors poses a real challenge since the whole truth will never be within our grasp. The present thesis addresses the question of improving the analysis procedures for NWP in the tropics. Improvements are sought by addressing the following issues: - the efficiency of the internal model adjustment, - the potential of the reliable background-error information, as compared to observations, - the impact of a new, space-borne line-of-sight wind measurements, and - the usefulness of multivariate relationships for data assimilation in the tropics. Most NWP assimilation schemes are effectively univariate near the equator. In this thesis, a multivariate formulation of the variational data assimilation in the tropics has been developed. The proposed background-error model supports the mass-wind coupling based on convectively-coupled equatorial waves. The resulting assimilation model produces balanced analysis increments and hereby increases the efficiency of all types of observations. Idealized adjustment and multivariate analysis experiments highlight the importance of direct wind measurements in the tropics. In particular, the presented results confirm the superiority of wind observations compared to mass data, in spite of the exact multivariate relationships available from the background information. The internal model adjustment is also more efficient for wind observations than for mass data. In accordance with these findings, new satellite wind observations are expected to contribute towards the improvement of NWP and climate modeling in the tropics. Although incomplete, the new wind-field information has the potential to reduce uncertainties in the tropical dynamical fields, if used together with the existing satellite mass-field measurements. The results obtained by applying the new background-error representation to the tropical short-range forecast errors of a state-of-art NWP model suggest that achieving useful tropical multivariate relationships may be feasible within an operational NWP environment.