3 resultados para potential land productivity
em Academic Archive On-line (Stockholm University
Resumo:
The purpose of this thesis is to analyse interactions between freshwater flows, terrestrial ecosystems and human well-being. Freshwater management and policy has mainly focused on the liquid water part (surface and ground water run off) of the hydrological cycle including aquatic ecosystems. Although of great significance, this thesis shows that such a focus will not be sufficient for coping with freshwater related social-ecological vulnerability. The thesis illustrates that the terrestrial component of the hydrological cycle, reflected in vapour flows (or evapotranspiration), serves multiple functions in the human life-support system. A broader understanding of the interactions between terrestrial systems and freshwater flows is particularly important in light of present widespread land cover change in terrestrial ecosystems. The water vapour flows from continental ecosystems were quantified at a global scale in Paper I of the thesis. It was estimated that in order to sustain the majority of global terrestrial ecosystem services on which humanity depends, an annual water vapour flow of 63 000 km3/yr is needed, including 6800 km3/yr for crop production. In comparison, the annual human withdrawal of liquid water amounts to roughly 4000 km3/yr. A potential conflict between freshwater for future food production and for terrestrial ecosystem services was identified. Human redistribution of water vapour flows as a consequence of long-term land cover change was addressed at both continental (Australia) (Paper II) and global scales (Paper III). It was estimated that the annual vapour flow had decreased by 10% in Australia during the last 200 years. This is due to a decrease in woody vegetation for agricultural production. The reduction in vapour flows has caused severe problems with salinity of soils and rivers. The human-induced alteration of vapour flows was estimated at more than 15 times the volume of human-induced change in liquid water (Paper II).
Resumo:
Improvements in on-farm water and soil fertility management through water harvesting may prove key to up-grade smallholder farming systems in dry sub-humid and semi-arid sub-Sahara Africa (SSA). The currently experienced yield levels are usually less than 1 t ha-1, i.e., 3-5 times lower than potential levels obtained by commercial farmers and researchers for similar agro-hydrological conditions. The low yield levels are ascribed to the poor crop water availability due to variable rainfall, losses in on-farm water balance and inherently low soil nutrient levels. To meet an increased food demand with less use of water and land in the region, requires farming systems that provide more yields per water unit and/or land area in the future. This thesis presents the results of a project on water harvesting system aiming to upgrade currently practised water management for maize (Zea mays, L.) in semi-arid SSA. The objectives were to a) quantify dry spell occurrence and potential impact in currently practised small-holder grain production systems, b) test agro-hydrological viability and compare maize yields in an on-farm experiment using combinations supplemental irrigation (SI) and fertilizers for maize, and c) estimate long-term changes in water balance and grain yields of a system with SI compared to farmers currently practised in-situ water harvesting. Water balance changes and crop growth were simulated in a 20-year perspective with models MAIZE1&2. Dry spell analyses showed that potentially yield-limiting dry spells occur at least 75% of seasons for 2 locations in semi-arid East Africa during a 20-year period. Dry spell occurrence was more frequent for crop cultivated on soil with low water-holding capacity than on high water-holding capacity. The analysis indicated large on-farm water losses as deep percolation and run-off during seasons despite seasonal crop water deficits. An on-farm experiment was set up during 1998-2001 in Machakos district, semi-arid Kenya. Surface run-off was collected and stored in a 300m3 earth dam. Gravity-fed supplemental irrigation was carried out to a maize field downstream of the dam. Combinations of no irrigation (NI), SI and 3 levels of N fertilizers (0, 30, 80 kg N ha-1) were applied. Over 5 seasons with rainfall ranging from 200 to 550 mm, the crop with SI and low nitrogen fertilizer gave 40% higher yields (**) than the farmers’ conventional in-situ water harvesting system. Adding only SI or only low nitrogen did not result in significantly different yields. Accounting for actual ability of a storage system and SI to mitigate dry spells, it was estimated that a farmer would make economic returns (after deduction of household consumption) between year 2-7 after investment in dam construction depending on dam sealant and labour cost used. Simulating maize growth and site water balance in a system of maize with SI increased annual grain yield with 35 % as a result of timely applications of SI. Field water balance changes in actual evapotranspiration (ETa) and deep percolation were insignificant with SI, although the absolute amount of ETa increased with 30 mm y-1 for crop with SI compared to NI. The dam water balance showed 30% productive outtake as SI of harvested water. Large losses due to seepage and spill-flow occurred from the dam. Water productivity (WP, of ETa) for maize with SI was on average 1 796 m3 per ton grain, and for maize without SI 2 254 m3 per ton grain, i.e, a decerase of WP with 25%. The water harvesting system for supplemental irrigation of maize was shown to be both biophysically and economically viable. However, adoption by farmers will depend on other factors, including investment capacity, know-how and legislative possibilities. Viability of increased water harvesting implementation in a catchment scale needs to be assessed so that other down-stream uses of water remains uncompromised.
Resumo:
Land Ownership and Development: Evidence from Postwar Japan This paper analyzes the effect of land ownership on technology adoption and structural transformation. A large-scale land reform in postwar Japan enforced a large number of tenant farmers who were cultivating land to become owners of this land. I find that the municipalities which had many owner farmers after the land reform tended to experience a quick entry of new agricultural machines which became available after the reform. The adoption of the machines reduced the dependence on family labor, and led to a reallocation of labor from agriculture to industries and service sectors in urban centers when these sectors were growing. I also analyze the aggregate impact of labor reallocation on economic growth by using a simple growth model and micro data. I find that it increased GDP by about 12 percent of the GDP in 1974 during 1955-74. I also find a large and positive effect on agricultural productivity. Loyalty and Treason: Theory and Evidence from Japan's Land Reform A historically large-scale land reform in Japan after World War II enforced by the occupation forces redistributed a large area of farmlands to tenant farmers. The reform demolished hierarchical structures by weakening landlords' power in villages and towns. This paper investigates how the change in the social and economic structure of small communities affects electoral outcomes in the presence of clientelism. I find that there was a considerable decrease in the vote share of conservative parties in highly affected areas after the reform. I find the supporting evidence that the effect was driven by the fact that the tenant farmers who had obtained land exited from the long-term tenancy contract and became independent landowners. The effect was relatively persistent. Finally, I also find the surprising result that there was a decrease, rather than an increase, in turnout in these areas after the reform. Geography and State Fragmentation We examine how geography affects the location of borders between sovereign states in Europe and surrounding areas from 1500 until today at the grid-cell level. This is motivated by an observation that the richest places in this region also have the highest historical border presence, suggesting a hitherto unexplored link between geography and modern development, working through state fragmentation. The raw correlations show that borders tend to be located on mountains, by rivers, closer to coasts, and in areas suitable for rainfed, but not irrigated, agriculture. Many of these patterns also hold with rigorous spatial controls. For example, cells with more rivers and more rugged terrain than their neighboring cells have higher border densities. However, the fragmenting effects of suitability for rainfed agriculture are reversed with such neighbor controls. Moreover, we find that borders are less likely to survive over time when they separate large states from small, but this size-difference effect is mitigated by, e.g., rugged terrain.