2 resultados para photoinduced absorption spectroscopy

em Academic Archive On-line (Stockholm University


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using x-ray absorption spectroscopy (XAS), x-ray emission spectroscopy (XES) and x-ray photoelectron spectroscopy (XPS) in combination with density functional theory (DFT) the changes in electronic and geometric structure of hydrocarbons upon adsorption are determined. The chemical bonding is analyzed and the results provide new insights in the mechanisms responsible for dehydrogenation in heterogeneous catalysis. In the case of alkanes, n-octane and methane are studied. XAS and XES show significant changes in the electronic structure upon adsorption. XES shows new adsorption induced occupied states and XAS shows quenching of CH*/Rydberg states in n-octane. In methane the symmetry forbidden gas phase lowest unoccupied molecular orbital becomes allowed due to broken symmetry. New adsorption induced unoccupied features with mainly metal character appear just above the Fermi level in XA spectra of both adsorbed methane and n-octane. These changes are not observed in DFT total energy geometry optimizations. Comparison between experimental and computed spectra for different adsorbate geometries reveals that the molecular structures are significantly changed in both molecules. The C-C bonds in n-octane are shortened upon adsorption and the C-H bonds are elongated in both n-octane and methane. In addition ethylene and acetylene are studied as model systems for unsaturated hydrocarbons. The validity of both the Dewar-Chatt-Duncanson chemisorption model and the alternative spin-uncoupling picture is confirmed, as well as C-C bond elongation and upward bending of the C-H bonds. The bonding of ethylene to Cu(110) and Ni(110) are compared and the results show that the main difference is the amount of back-donation into the molecular π* orbital, which allows the molecule to desorb molecularly from the Cu(110) surface, whereas it is dehydrogenated upon heating on the Ni(110) surface. Acetylene is found to adsorb in two different adsorption sites on the Cu(110) surface at liquid nitrogen temperature. Upon heating the molecules move into one of these sites due to attractive adsorbate-adsorbate interaction and only one adsorbed species is present at room temperature, at which point the molecules start reacting to form benzene. The bonding of the two species is very similar in both sites and the carbon atoms are rehybridized essentially to sp2.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Water is one of the most common compounds on earth and is essential for all biological activities. Water has, however, been a mystery for many years due to the large number of unusual chemical and physical properties, e.g. decreased volume during melting and maximum density at 4 °C. The origin of the anomalies behavior is the nature of the hydrogen bond. This thesis will presented an x-ray absorption spectroscopy (XAS) study to reveal the hydrogen bond structure in liquid water. The x-ray absorption process is faster than a femtosecond and thereby reflects the molecular orbital structure in a frozen geometry locally around the probed water molecules. The results indicate that the electronic structure of liquid water is significantly different from that of the solid and gaseous forms. The molecular arrangement in the first coordination shell of liquid water is actually very similar as the two-hydrogen-bonded configurations at the surface of ice. This discovery suggests that most molecules in liquid water have two-hydrogen-bonded configurations with one donor and one acceptor hydrogen bond compared to the four-hydrogen-bonded tetrahedral structure in ice. This result is controversial since the general picture is that the structure of liquid water is very similar to the structure of ice. The results are, however, consistent with x-ray and neutron diffraction data but reveals serious discrepancies with structures based on current molecular dynamics simulations. The two-hydrogen-bond configuration in liquid water is rigid and heating from 25 °C to 90 °C introduce a minor change in the hydrogen-bonded configurations. Furthermore, XAS studies of water in aqueous solutions show that ion hydration does not affect the hydrogen bond configuration of the bulk. Only water molecules in the close vicinity to the ions show changes in the hydrogen bond formation. XAS data obtained with fluorescence yield are sensitive enough to resolved electronic structure of water molecules in the first hydration sphere and to distinguish between different protonated species. Hence, XAS is a useful tool to provide insight into the local electronic structure of a hydrogen-bonded liquid and it is applied for the first time on water revealing unique information of high importance.