2 resultados para muon
em Academic Archive On-line (Stockholm University
Resumo:
The nature of the dark matter in the Universe is one of the greatest mysteries in modern astronomy. The neutralino is a nonbaryonic dark matter candidate in minimal supersymmetric extensions to the standard model of particle physics. If the dark matter halo of our galaxy is made up of neutralinos some would become gravitationally trapped inside massive bodies like the Earth. Their pair-wise annihilation produces neutrinos that can be detected by neutrino experiments looking in the direction of the centre of the Earth. The AMANDA neutrino telescope, currently the largest in the world, consists of an array of light detectors buried deep in the Antarctic glacier at the geographical South Pole. The extremely transparent ice acts as a Cherenkov medium for muons passing the array and using the timing information of detected photons it is possible to reconstruct the muon direction. A search has been performed for nearly vertically upgoing neutrino induced muons with AMANDA-B10 data taken over the three year period 1997-99. No excess above the atmospheric neutrino background expectation was found. Upper limits at the 90 % confidence level has been set on the annihilation rate of neutralinos at the centre of the Earth and on the muon flux induced by neutrinos created by the annihilation products.
Resumo:
The annihilation of weakly interacting massive particles (WIMPs), accumulated in gravitational potentials (e.g., the core of the Earth, the Sun or the Galactic halo) would lead to neutrino production. This thesis investigates the possibility of searching for WIMPs in the form of the lightest supersymmetric particle (neutralino) trapped in the Sun using the AMANDA-II neutrino telescope. AMANDA-II is a large Cherenkov detector located deep in the ice at the geographical South Pole. The presented work is based on data taken during the year 2001. An analysis optimized to search for the neutralino-induced flux from the Sun has been developed. The observation of no excess with respect to the expected atmospheric neutrino background has been interpreted as an upper limit on the neutralino annihilation rate in the Sun and on the neutralino-induced muon flux in the vicinity of the detector.