2 resultados para local-to-zero analysis
em Academic Archive On-line (Stockholm University
Resumo:
The use of type Ia supernovae as distance estimators has shown that about 75% of the energy content of the universe has a negative equation of state parameter and thus, drives the acceleration of the universe. Constraining the exact nature of this energy is one of the main goals in cosmology. As the statistics of observed high-redshift supernovae increases, systematic effects become the limiting factor to pursue such investigations, thus deeper understanding of the physical properties of SNe is of great importance. In this thesis we investigate spectral homogeneity and diversity of local and high redshift supernovae. Special emphasis has been given to the analysis of optical spectra of local peculiar supernovae 1999aa and 1999ac. The study of the spectra of SN 1999aa pointed out that this SN could be a link between the extreme peculiar SN 1991T and normal SNe. Moreover, the identification of a high velocity component of Ca II and possibly of a low velocity component of C III suggests some degree of asphericity in the ejecta of this supernova. Evidence for a deflagration of a C+O white dwarf was found in the early spectra of SN 1999ac. The spectral proprieties of a vast sample of local SNe are also studied by means of newly introduced spectral indicators. These were used to possibly improve the intrinsic spread of SN peak magnitudes to 0.15 mag, independently of light curve parameters. The first quantitative comparison between local and high redshift supernova is carried out. No evidence for extreme peculiar sub-luminous SNe was found in our data set including 13 SNe with redshift range z=0.279-0.912. Furthermore, SN2002fd (z=0.279) was found to show spectral characteristics similar to SN 1991T/SN 1999aa-like supernovae. We also present a feasibility study of the Hubble diagram in rest frame I-band up to z~0.5, and show the possibility to probe the presence of intergalactic dust, which could possibly mimic the effect of dark energy in the Hubble diagram.
Resumo:
High-impact, localized intense rainfall episodes represent a major socio-economic problem for societies worldwide, and at the same time these events are notoriously difficult to simulate properly in climate models. Here, the authors investigate how horizontal resolution and model formulation influence this issue by applying the HARMONIE regional climate model (HCLIM) with three different setups; two using convection parameterization at 15 and 6.25 km horizontal resolution (the latter within the “grey-zone” scale), with lateral boundary conditions provided by ERA-Interim reanalysis and integrated over a pan-European domain, and one with explicit convection at 2 km resolution (HCLIM2) over the Alpine region driven by the 15 km model. Seven summer seasons were sampled and validated against two high-resolution observational data sets. All HCLIM versions underestimate the number of dry days and hours by 20-40%, and overestimate precipitation over the Alpine ridge. Also, only modest added value were found of “grey-zone” resolution. However, the single most important outcome is the substantial added value in HCLIM2 compared to the coarser model versions at sub-daily time scales. It better captures the local-to-regional spatial patterns of precipitation reflecting a more realistic representation of the local and meso-scale dynamics. Further, the duration and spatial frequency of precipitation events, as well as extremes, are closer to observations. These characteristics are key ingredients in heavy rainfall events and associated flash floods, and the outstanding results using HCLIM in convection-permitting setting are convincing and encourage further use of the model to study changes in such events in changing climates.