2 resultados para labelling

em Academic Archive On-line (Stockholm University


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A low content of organic matter, which is largely refractory in nature, is characteristic of most sediments, meaning that aquatic deposit-feeders live on a very poor food source. The food is derived mainly from sedimenting phytodetritus, and in temperate waters like the Baltic Sea, from seasonal phytoplankton blooms. Deposit-feeders are either bulk-feeders, or selective feeders, which preferentially ingest the more organic-rich particles in the sediment, including phytodetritus, microbes and meiofauna. The soft-bottom benthos of the Baltic Sea has low species biodiversity and is dominated by a few macrobenthic species, among which the most numerous are the two deposit-feeding amphipods Monoporeia affinis and Pontoporeia femorata, and the bivalve Macoma balthica. This thesis is based on laboratory experiments on the feeding of these three species, and on the priapulid Halicryptus spinulosus. Feeding by benthic animals is often difficult to observe, but can be effectively studied by the use of tracers. Here we used the radioactive isotope 14C to label food items and to trace the organic matter uptake in the animals, while the stable isotopes 13C and 15N were used to follow feeding on aged organic matter in the sediment. The abundance of M. balthica and the amphipods tends to be negatively correlated, i.e., fewer bivalves are found at sites with dense populations of amphipods, with the known explanation that newly settled M. balthica spat are killed by the amphipods. Whether the postlarvae are just accidentally killed, or also ingested after being killed was tested by labelling the postlarvae with 14C and Rhodamine B. Both tracer techniques gave similar evidence for predation on and ingestion of postlarval bivalves. We calculated that this predation was likely to supply less than one percent of the daily carbon requirement for M. affinis, but might nevertheless be an important factor limiting recruitment of M. balthica. The two amphipods M. affinis and P. femorata are partly vertically segregated in the sediment, but whether they also feed at different depths was unknown. By adding fresh 14C-labelled algae either on the sediment surface or mixed into the sediment, we were able to distinguish surface from subsurface feeding. We found M. affinis and P. femorata to be surface and subsurface deposit-feeders, respectively. Whether the amphipods also feed on old organic matter, was studied by adding fresh 14C-labelled algae on the sediment surface, and using aged, one-year-old 13C- and 15N-labelled sediment as deep sediment. Ingestion of old organic matter, traced by the stable isotopes, differed between the two species, with a higher uptake for P. femorata, suggesting that P. femorata utilises the older, deeper-buried organic matter to a greater extent. Feeding studies with juveniles of both M. affinis and P. femorata had not been done previously. In an experiment with the same procedure and treatments as for the adults, juveniles of both amphipod species were found to have similar feeding strategies. They fed on both fresh and old sediment, with no partitioning of food resources, making them likely to be competitors for the same food resource. Oxygen deficiency has become more wide-spread in the Baltic Sea proper in the last half-century, and upwards of 70 000km2 are now devoid of macrofauna, even though part of that area does not have oxygen concentrations low enough to directly kill the macrofauna. We made week-long experiments on the rate of feeding on 14C-labelled diatoms spread on the sediment surface in different oxygen concentrations for both the amphipod species, M. balthica and H. spinulosus. The amphipods were the most sensitive to oxygen deficiency and showed reduced feeding and lower survival at low oxygen concentrations. M. balthica showed reduced feeding at the lowest oxygen concentration, but no mortality increase. The survival of H. spinulosus was unaffected, but it did not feed, showing that it is not a surface deposit-feeder. We conclude that low oxygen concentrations that are not directly lethal, but reduce food intake, may lead to starvation and death in the longer term.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Programmed cell death (PCD) is a widely spread phenomenon among multi-cellular organisms. Without the deletion of cells no longer needed, the organism will not be able to develop in a predicted way. It is now belived that all cells have the capacity to self-destruct and that the survival of the cells is depending on the repression of this suicidal programme. PCD has turned out to show similarities in many different species and there are strong indications that the mechanisms running the programme might, at least in some parts, be evolutionarily conserced. PCD is a generic term for different programmes of cell destruction, such as apoptosis and autophagic PCD. An important tool to determine if a cell is undergoing PCD is the transmitting electron microscope. The aims of my study were to find out if, and in what way, the suspensor and endosperm in Vicia faba (Broad bean), which are short-lived structures, undergoes PCD. The endosperm degradation preceed the suspensor cell death and they differ to some extent ultrastructurally. The cell death occurs in both tissues about 13-14 days after pollination when the embryo proper is mature enough to support itself. It was found that both tissues are committed to autophagic PCD, a cell death characteristic of conspicuous formations of autophagic vacuoles. It was shown by histochemical staining that acid phosphatases are accumulated in these vacuoles but are also present in the cytoplasm. These vacuoles are similar to autophagic vacuoles formed in rat liver cells, indicating that autophagy is a widely spread phenomenon. DNA fragmentation is the first visible sign of PCD in both tissues and it is demonstrated by a labelling technique (TUNEL). In the endosperm nuclei the heterochromatin subsequently appears in the form of a network, while in the suspensor it is more conspicuous, with heterochromatin that forms large electron dense aggregates located close to the nuclear envelope. In the suspensor, the plastids develop into chromoplasts with lycopene crystals at the same time or shortly after DNA fragmentation. This is probably due to the fact that the suspensor plastids function as hormone producing organelles and support the embryo proper with indispensable growth factors. Later the embryo will be able to produce its own growth factors and the synthesis of these, in particular gibberelines, might be suppressed in the suspensor. The precursors can then be used for synthesis of lycopene instead. Both the suspensor and endosperm are going through autophagic PCD, but the process differs in some respects. This is probably due the the different function of the two tissues, and that the signals that trigger the process presumably are different. The embryo proper is probably the source of the death signal affecting the suspensor. The endosperm, which has a different origin and function, might be controlling the death signal within its own cell. The death might in this case be related to the age of the cell.