3 resultados para food resources

em Academic Archive On-line (Stockholm University


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A low content of organic matter, which is largely refractory in nature, is characteristic of most sediments, meaning that aquatic deposit-feeders live on a very poor food source. The food is derived mainly from sedimenting phytodetritus, and in temperate waters like the Baltic Sea, from seasonal phytoplankton blooms. Deposit-feeders are either bulk-feeders, or selective feeders, which preferentially ingest the more organic-rich particles in the sediment, including phytodetritus, microbes and meiofauna. The soft-bottom benthos of the Baltic Sea has low species biodiversity and is dominated by a few macrobenthic species, among which the most numerous are the two deposit-feeding amphipods Monoporeia affinis and Pontoporeia femorata, and the bivalve Macoma balthica. This thesis is based on laboratory experiments on the feeding of these three species, and on the priapulid Halicryptus spinulosus. Feeding by benthic animals is often difficult to observe, but can be effectively studied by the use of tracers. Here we used the radioactive isotope 14C to label food items and to trace the organic matter uptake in the animals, while the stable isotopes 13C and 15N were used to follow feeding on aged organic matter in the sediment. The abundance of M. balthica and the amphipods tends to be negatively correlated, i.e., fewer bivalves are found at sites with dense populations of amphipods, with the known explanation that newly settled M. balthica spat are killed by the amphipods. Whether the postlarvae are just accidentally killed, or also ingested after being killed was tested by labelling the postlarvae with 14C and Rhodamine B. Both tracer techniques gave similar evidence for predation on and ingestion of postlarval bivalves. We calculated that this predation was likely to supply less than one percent of the daily carbon requirement for M. affinis, but might nevertheless be an important factor limiting recruitment of M. balthica. The two amphipods M. affinis and P. femorata are partly vertically segregated in the sediment, but whether they also feed at different depths was unknown. By adding fresh 14C-labelled algae either on the sediment surface or mixed into the sediment, we were able to distinguish surface from subsurface feeding. We found M. affinis and P. femorata to be surface and subsurface deposit-feeders, respectively. Whether the amphipods also feed on old organic matter, was studied by adding fresh 14C-labelled algae on the sediment surface, and using aged, one-year-old 13C- and 15N-labelled sediment as deep sediment. Ingestion of old organic matter, traced by the stable isotopes, differed between the two species, with a higher uptake for P. femorata, suggesting that P. femorata utilises the older, deeper-buried organic matter to a greater extent. Feeding studies with juveniles of both M. affinis and P. femorata had not been done previously. In an experiment with the same procedure and treatments as for the adults, juveniles of both amphipod species were found to have similar feeding strategies. They fed on both fresh and old sediment, with no partitioning of food resources, making them likely to be competitors for the same food resource. Oxygen deficiency has become more wide-spread in the Baltic Sea proper in the last half-century, and upwards of 70 000km2 are now devoid of macrofauna, even though part of that area does not have oxygen concentrations low enough to directly kill the macrofauna. We made week-long experiments on the rate of feeding on 14C-labelled diatoms spread on the sediment surface in different oxygen concentrations for both the amphipod species, M. balthica and H. spinulosus. The amphipods were the most sensitive to oxygen deficiency and showed reduced feeding and lower survival at low oxygen concentrations. M. balthica showed reduced feeding at the lowest oxygen concentration, but no mortality increase. The survival of H. spinulosus was unaffected, but it did not feed, showing that it is not a surface deposit-feeder. We conclude that low oxygen concentrations that are not directly lethal, but reduce food intake, may lead to starvation and death in the longer term.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Animals and plants in temperate regions must adapt their life cycle to pronounced seasonal variation. The research effort that has gone into studying these cyclical life history events, or phenological traits, has increased greatly in recent decades. As phenological traits are often correlated to temperature, they are relevant to study in terms of understanding the effect of short term environmental variation as well as long term climate change. Because of this, changes in phenology are the most obvious and among the most commonly reported responses to climate change. Moreover, phenological traits are important for fitness as they determine the biotic and abiotic environment an individual encounters. Fine-tuning of phenology allows for synchronisation at a local scale to mates, food resources and appropriate weather conditions. On a between-population scale, variation in phenology may reflect regional variation in climate. Such differences can not only give insights to life cycle adaptation, but also to how populations may respond to environmental change through time. This applies both on an ecological scale through phenotypic plasticity as well as an evolutionary scale through genetic adaptation. In this thesis I have used statistical and experimental methods to investigate both the larger geographical patterns as well as mechanisms of fine-tuning of phenology of several butterfly species. The main focus, however, is on the orange tip butterfly, Anthocharis cardamines, in Sweden and the United Kingdom. I show a contrasting effect of spring temperature and winter condition on spring phenology for three out of the five studied butterfly species. For A. cardamines there are population differences in traits responding to these environmental factors between and within Sweden and the UK that suggest adaptation to local environmental conditions. All populations show a strong negative plastic relationship between spring temperature and spring phenology, while the opposite is true for winter cold duration. Spring phenology is shifted earlier with increasing cold duration. The environmental variables show correlations, for example, during a warm year a short winter delays phenology while a warm spring speeds phenology up. Correlations between the environmental variables also occur through space, as the locations that have long winters also have cold springs. The combined effects of these two environmental variables cause a complex geographical pattern of phenology across the UK and Sweden. When predicting phenology with future climate change or interpreting larger geographical patterns one must therefore have a good enough understanding of how the phenology is controlled and take the relevant environmental factors in to account. In terms of the effect of phenological change, it should be discussed with regards to change in life cycle timing among interacting species. For example, the phenology of the host plants is important for A. cardamines fitness, and it is also the main determining factor for oviposition. In summary, this thesis shows that the broad geographical pattern of phenology of the butterflies is formed by counteracting environmental variables, but that there also are significant population differences that enable fine-tuning of phenology according to the seasonal progression and variation at the local scale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern food production is a complex, globalized system in which what we eat and how it is produced are increasingly disconnected. This thesis examines some of the ways in which global trade has changed the mix of inputs to food and feed, and how this affects food security and our perceptions of sustainability. One useful indicator of the ecological impact of trade in food and feed products is the Appropriated Ecosystem Areas (ArEAs), which estimates the terrestrial and aquatic areas needed to produce all the inputs to particular products. The method is introduced in Paper I and used to calculate and track changes in imported subsidies to Swedish agriculture over the period 1962-1994. In 1994, Swedish consumers needed agricultural areas outside their national borders to satisfy more than a third of their food consumption needs. The method is then applied to Swedish meat production in Paper II to show that the term “Made in Sweden” is often a misnomer. In 1999, almost 80% of manufactured feed for Swedish pigs, cattle and chickens was dependent on imported inputs, mainly from Europe, Southeast Asia and South America. Paper III examines ecosystem subsidies to intensive aquaculture in two nations: shrimp production in Thailand and salmon production in Norway. In both countries, aquaculture was shown to rely increasingly on imported subsidies. The rapid expansion of aquaculture turned these countries from fishmeal net exporters to fishmeal net importers, increasingly using inputs from the Southeastern Pacific Ocean. As the examined agricultural and aquacultural production systems became globalized, levels of dependence on other nations’ ecosystems, the number of external supply sources, and the distance to these sources steadily increased. Dependence on other nations is not problematic, as long as we are able to acknowledge these links and sustainably manage resources both at home and abroad. However, ecosystem subsidies are seldom recognized or made explicit in national policy or economic accounts. Economic systems are generally not designed to receive feedbacks when the status of remote ecosystems changes, much less to respond in an ecologically sensitive manner. Papers IV and V discuss the problem of “masking” of the true environmental costs of production for trade. One of our conclusions is that, while the ArEAs approach is a useful tool for illuminating environmentally-based subsidies in the policy arena, it does not reflect all of the costs. Current agricultural and aquacultural production methods have generated substantial increases in production levels, but if policy continues to support the focus on yield and production increases alone, taking the work of ecosystems for granted, vulnerability can result. Thus, a challenge is to develop a set of complementary tools that can be used in economic accounting at national and international scales that address ecosystem support and performance. We conclude that future resilience in food production systems will require more explicit links between consumers and the work of supporting ecosystems, locally and in other regions of the world, and that food security planning will require active management of the capacity of all involved ecosystems to sustain food production.