2 resultados para exploratory data analysis
em Academic Archive On-line (Stockholm University
Resumo:
In this thesis some multivariate spectroscopic methods for the analysis of solutions are proposed. Spectroscopy and multivariate data analysis form a powerful combination for obtaining both quantitative and qualitative information and it is shown how spectroscopic techniques in combination with chemometric data evaluation can be used to obtain rapid, simple and efficient analytical methods. These spectroscopic methods consisting of spectroscopic analysis, a high level of automation and chemometric data evaluation can lead to analytical methods with a high analytical capacity, and for these methods, the term high-capacity analysis (HCA) is suggested. It is further shown how chemometric evaluation of the multivariate data in chromatographic analyses decreases the need for baseline separation. The thesis is based on six papers and the chemometric tools used are experimental design, principal component analysis (PCA), soft independent modelling of class analogy (SIMCA), partial least squares regression (PLS) and parallel factor analysis (PARAFAC). The analytical techniques utilised are scanning ultraviolet-visible (UV-Vis) spectroscopy, diode array detection (DAD) used in non-column chromatographic diode array UV spectroscopy, high-performance liquid chromatography with diode array detection (HPLC-DAD) and fluorescence spectroscopy. The methods proposed are exemplified in the analysis of pharmaceutical solutions and serum proteins. In Paper I a method is proposed for the determination of the content and identity of the active compound in pharmaceutical solutions by means of UV-Vis spectroscopy, orthogonal signal correction and multivariate calibration with PLS and SIMCA classification. Paper II proposes a new method for the rapid determination of pharmaceutical solutions by the use of non-column chromatographic diode array UV spectroscopy, i.e. a conventional HPLC-DAD system without any chromatographic column connected. In Paper III an investigation is made of the ability of a control sample, of known content and identity to diagnose and correct errors in multivariate predictions something that together with use of multivariate residuals can make it possible to use the same calibration model over time. In Paper IV a method is proposed for simultaneous determination of serum proteins with fluorescence spectroscopy and multivariate calibration. Paper V proposes a method for the determination of chromatographic peak purity by means of PCA of HPLC-DAD data. In Paper VI PARAFAC is applied for the decomposition of DAD data of some partially separated peaks into the pure chromatographic, spectral and concentration profiles.
Resumo:
The Brazilian state of Paraná exhibits a violent geography of inequality and duality, hosting both the most developed city in the country, internationally recognized by its urban and environmental innovations, and southern Brazil’s most concentrated cluster of poverty and underdevelopment. Over the course of the past decades, the state underwent a major economic transformation, modernizing and increasing its industrial structure and shifting to the service sector with a larger participation of the knowledge economy. This study is concerned on the interplay between formal education and socioeconomic development during this process, and above all its spatial character. It attempts make sense of the rich literature on education and growth and/or development, discussing it through the lenses of human geography and planning. In order for the analysis to be possible, this study created a consistent database of municipal scores of education over the course of 40 years, dealing with changing census methodologies and municipal boundaries. Making use of modern exploratory spatial data analysis combined with spatial regressions, the study identifies a clustered, time-persistent interplay between education and development that is stronger for low and basic levels of education. Moreover, it provides evidence that not only education is a predictor of future development, but also that analyses of this kind must take into consideration spatial autocorrelation in order to be accurate.