2 resultados para ecosystem-based adaptation

em Academic Archive On-line (Stockholm University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conservatism is a central theme of organismic evolution. Related species share characteristics due to their common ancestry. Some concern have been raised among evolutionary biologists, whether such conservatism is an expression of natural selection or of a constrained ability to adapt. This thesis explores adaptations and constraints within the plant reproductive phase, particularly in relation to the evolution of fleshy fruit types (berries, drupes, etc.) and the seasonal timing of flowering and fruiting. The different studies were arranged along a hierarchy of scale, with general data sets sampled among seed plants at the global scale, through more specific analyses of character evolution within the genus Rhamnus s.l. L. (Rhamnaceae), to descriptive and experimental field studies in a local population of Frangula alnus (Rhamnaceae). Apart from the field study, this thesis is mainly based on comparative methods explicitly incorporating phylogenetic relationships. The comparative study of Rhamnus s.l. species included the reconstruction of phylogenetic hypotheses based on DNA sequences. Among geographically overlapping sister clades, biotic pollination was not correlated with higher species richness when compared to wind pollinated plants. Among woody plants, clades characterized by fleshy fruit types were more species rich than their dry-fruited sister clades, suggesting that the fleshy fruit is a key innovation in woody habitats. Moreover, evolution of fleshy fruits was correlated with a change to more closed (darker) habitats. An independent contrast study within Rhamnus s.l. documented allometric relations between plant and fruit size. As a phylogenetic constraint, allometric effects must be considered weak or non-existent, though, as they did not prevail among different subclades within Rhamnus s.l. Fruit size was correlated with seed size and seed number in F. alnus. This thesis suggests that frugivore selection on fleshy fruit may be important by constraining the upper limits of fruit size, when a plant lineage is colonizing (darker) habitats where larger seed size is adaptive. Phenological correlations with fruit set, dispersal, and seed size in F. alnus, suggested that the evolution of reproductive phenology is constrained by trade-offs and partial interdependences between flowering, fruiting, dispersal, and recruitment phases. Phylogenetic constraints on the evolution of phenology were indicated by a lack of correlation between flowering time and seasonal length within Rhamnus cathartica and F. alnus, respectively. On the other hand, flowering time was correlated with seasonal length among Rhamnus s.l. species. Phenological differences between biotically and wind pollinated angiosperms also suggested adaptive change in reproductive phenology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern food production is a complex, globalized system in which what we eat and how it is produced are increasingly disconnected. This thesis examines some of the ways in which global trade has changed the mix of inputs to food and feed, and how this affects food security and our perceptions of sustainability. One useful indicator of the ecological impact of trade in food and feed products is the Appropriated Ecosystem Areas (ArEAs), which estimates the terrestrial and aquatic areas needed to produce all the inputs to particular products. The method is introduced in Paper I and used to calculate and track changes in imported subsidies to Swedish agriculture over the period 1962-1994. In 1994, Swedish consumers needed agricultural areas outside their national borders to satisfy more than a third of their food consumption needs. The method is then applied to Swedish meat production in Paper II to show that the term “Made in Sweden” is often a misnomer. In 1999, almost 80% of manufactured feed for Swedish pigs, cattle and chickens was dependent on imported inputs, mainly from Europe, Southeast Asia and South America. Paper III examines ecosystem subsidies to intensive aquaculture in two nations: shrimp production in Thailand and salmon production in Norway. In both countries, aquaculture was shown to rely increasingly on imported subsidies. The rapid expansion of aquaculture turned these countries from fishmeal net exporters to fishmeal net importers, increasingly using inputs from the Southeastern Pacific Ocean. As the examined agricultural and aquacultural production systems became globalized, levels of dependence on other nations’ ecosystems, the number of external supply sources, and the distance to these sources steadily increased. Dependence on other nations is not problematic, as long as we are able to acknowledge these links and sustainably manage resources both at home and abroad. However, ecosystem subsidies are seldom recognized or made explicit in national policy or economic accounts. Economic systems are generally not designed to receive feedbacks when the status of remote ecosystems changes, much less to respond in an ecologically sensitive manner. Papers IV and V discuss the problem of “masking” of the true environmental costs of production for trade. One of our conclusions is that, while the ArEAs approach is a useful tool for illuminating environmentally-based subsidies in the policy arena, it does not reflect all of the costs. Current agricultural and aquacultural production methods have generated substantial increases in production levels, but if policy continues to support the focus on yield and production increases alone, taking the work of ecosystems for granted, vulnerability can result. Thus, a challenge is to develop a set of complementary tools that can be used in economic accounting at national and international scales that address ecosystem support and performance. We conclude that future resilience in food production systems will require more explicit links between consumers and the work of supporting ecosystems, locally and in other regions of the world, and that food security planning will require active management of the capacity of all involved ecosystems to sustain food production.