2 resultados para contaminated soil
em Academic Archive On-line (Stockholm University
Resumo:
A microorganism was isolated which could grow on unusually high concentrations of the toxic pollutant 4-chlorophenol. Taxonomic studies showed that the microorganism constituted a novel species within the genus Arthrobacter and it was named Arthrobacter chlorophenolicus A6. A. chlorophenolicus A6 was chromosomally tagged with either the gfp gene, encoding the green fluorescent protein (GFP), or the luc gene, encoding firefly luciferase. When the tagged cells were inoculated into 4-chlorophenol contaminated soil they could completely remove 175 µg/g 4-chlorophenol within 10 days, whereas no loss of 4-chlorophenol was observed in the uninoculated control microcosms. During these experiments the gfp and luc marker genes allowed monitoring of cell number and metabolic status. When A. chlorophenolicus A6 was grown on mixtures of phenolic compounds, the strain exhibited a preference for 4-nitrophenol over 4-chlorophenol, which in turn was preferred over phenol. Analysis of growth and degradation data indicated that the same enzyme system was used for removal of 4-chlorophenol and 4-nitrophenol. However, degradation of unbstituted phenol appeared to be mediated by another or an additional enzyme system. The luc-tagged A. chlorophenolicus A6 gave valuable information about growth, substrate depletion and toxicity of the phenolic compounds in substrate mixtures. The 4-chlorophenol degradation pathway in A. chlorophenolicus A6 was elucidated. The metabolic intermediate subject to ring cleavage was found to be hydroxyquinol and two different pathway branches led from 4-chlorophenol to hydroxyquinol. A gene cluster involved in 4-chlorophenol degradation was cloned from A. chlorophenolicus A6. The cluster contained two functional hydroxyquinol 1,2-dioxygenase genes and a number of other open reading frames presumed to encode enzymes involved in 4-chlorophenol catabolism. Analysis of the DNA sequence suggested that the gene cluster had partly been assembled by horizontal gene transfer. In summary, 4-chlorophenol degradation by A. chlorophenolicus A6 was studied from a number of angles. This organism has several interesting and useful traits such as the ability to degrade high concentrations of 4-chlorophenol and other phenols alone and in mixtures, an unusual and effective 4-chlorophenol degradation pathway and demonstrated ability to remove 4-chlorophenol from contaminated soil.
Resumo:
Mercury (Hg) pollution is a global environmental problem. Numerous Hg-contaminated sites exist in the world and new techniques for remediation are urgently needed. Phytoremediation, use of plants to remove pollutants from the environment or to render them harmless, is considered as an environment-friendly method to remediate contaminated soil in-situ and has been applied for some other heavy metals. Whether this approach is suitable for remediation of Hg-contaminated soil is, however, an open question. The aim of this thesis was to study the fate of Hg in terrestrial plants (particularly the high biomass producing willow, Salix spp.) and thus to clarify the potential use of plants to remediate Hg-contaminated soils. Plants used for phytoremediation of Hg must tolerate Hg. A large variation (up to 30-fold difference) was detected among the six investigated clones of willow in their sensitivity to Hg as reflected in their empirical toxicity threshold (TT95b), the maximum unit toxicity (UTmax) and EC50 levels. This gives us a possibility to select Hg-tolerant willow clones to successfully grow in Hgcontaminated soils for phytoremediation. Release of Hg into air by plants is a concern when using phytoremediation in practice. No evidence was found in this study that Hg was released to the air via shoots of willow, garden pea (Pisum sativum L. cv Faenomen), spring wheat (Triticum aestivum L. cv Dragon), sugar beet (Beta vulgaris L. cv Monohill), oil-seed rape (Brassica napus L. cv Paroll) and white clover (Trifolium repens L.). Thus, we conclude that the Hg burden to the atmosphere via phytoremediation is not increased. Phytoremediation processes are based on the ability of plant roots to accumulate Hg and to translocate it to the shoots. Willow roots were shown to be able to efficiently accumulate Hg in hydroponics, however, no variation in the ability to accumulate was found among the eight willow clones using CVAAS to analyze Hg content in plants. The majority of the Hg accumulated remained in the roots and only 0.5-0.6% of the Hg accumulation was translocated to the shoots. Similar results were found for the five common cultivated plant species mentioned above. Moreover, the accumulation of Hg in willow was higher when being cultivated in methyl-Hg solution than in inorganic Hg solution, whereas the translocation of Hg to the shoots did not differ. The low bioavailability of Hg in contaminated soil is a restricting factor for the phytoextraction of Hg. A selected tolerant willow clone was used to study whether iodide addition could increase the plant-accumulation of Hg from contaminated soil. Both pot tests and field trials were carried out. Potassium iodide (KI) addition was found to mobilize Hg in contaminated soil and thus increase the bioavailability of Hg in soils. Addition of KI (0.2–1 mM) increased the Hg concentrations up to about 5, 3 and 8 times in the leaves, branches and roots, respectively. However, too high concentrations of KI were toxic to plants. As the majority of the Hg accumulated in the roots, it might be unrealistic to use willow for phytoextraction of Hg in practice, even though iodide could enhance the phytoextraction efficiency. In order to study the effect of willow on various soil fractions of Hg-contaminated soil, a 5-step sequential soil extraction method was used. Both the largest Hg-contaminated fractions, i.e. the Hg bound to residual organic matter (53%) and sulphides (43%), and the residual fraction (2.5%), were found to remain stable during cultivations of willow. The exchangeable Hg (0.1%) and the Hg bound to humic and fulvic acids (1.1%) decreased in the rhizospheric soil, whereas the plant accumulation of Hg increased with the cultivation time. The sum of the decrease of the two Hg fractions in soils was approximately equal to the amount of the Hg accumulated in plants. Consequently, plants may be suitable for phytostabilization of aged Hg-contaminated soil, in which root systems trap the bioavailable Hg and reduce the leakage of Hg from contaminated soils.